DOI QR코드

DOI QR Code

Refinement of Protein NMR Structure under Membrane-like Environments with an Implicit Solvent Model

  • Jee, Jun-Goo ;
  • Ahn, Hee-Chul
  • Published : 2009.05.20

Abstract

Refinement of NMR structures by molecular dynamics (MD) simulations with a solvent model has improved the structural quality. In this study, we applied MD refinement with the generalized Born (GB) implicit solvent model to protein structure determined under membrane-like environments. Despite popularity of the GB model, its applications to the refinement of NMR structures of hydrophobic proteins, in which detergents or organic solvents enclose proteins, are limited, and there is little information on the use of another GB parameter for these cases. We carried out MD refinement of crambin NMR structure in dodecylphosphocholine (DPC) micelles (Ahn et al., J. Am. Chem. Soc. 2006, 128, 4398-4404) with GB/Surface area model and two different surface tension coefficients, one for aquatic and the other for hydrophobic conditions. Our data show that, of two structures by MD refinement with GB model, the one refined with the parameter to consider hydrophobic condition had the better qualities in terms of precision and solvent accessibility.

Keywords

NMR, Implicit solvent;Molecular dynamics simulation;Generalized Born model;Force field

References

  1. Xia, B.; Tsui, V.; Case, D. A.; Dyson, H. J.; Wright, P. E. J. Biomol. NMR 2002, 22, 317-331 https://doi.org/10.1023/A:1014929925008
  2. Jee, J.; Byeon, I. J.; Louis, J. M.; Gronenborn, A. M. Proteins 2008, 71, 1420-1431 https://doi.org/10.1002/prot.21831
  3. Ohno, A.; Jee, J.; Fujiwara, K.; Tenno, T.; Goda, N.; Tochio, H.; Kobayashi, H.; Hiroaki, H.; Shirakawa, M. Structure 2005, 13, 521-532 https://doi.org/10.1016/j.str.2005.01.011
  4. Fujiwara, K.; Tenno, T.; Sugasawa, K.; Jee, J. G.; Ohki, I.; Kojima, C.; Tochio, H.; Hiroaki, H.; Hanaoka, F.; Shirakawa, M. J. Biol. Chem. 2004, 279, 4760-4767 https://doi.org/10.1074/jbc.M309448200
  5. Chen, J.; Im, W.; Brooks, C. L., 3rd J. Am. Chem. Soc. 2004, 126, 16038-16047 https://doi.org/10.1021/ja047624f
  6. W$\ddot{u}$thrich, K. NMR of Proteins and Nucleic Acids; Wiley: New York, 1986
  7. Call, M. E.; Schnell, J. R.; Xu, C.; Lutz, R. A.; Chou, J. J.; Wucherpfennig, K. W. Cell 2006, 127, 355-368 https://doi.org/10.1016/j.cell.2006.08.044
  8. Roosild, T. P.; Greenwald, J.; Vega, M.; Castronovo, S.; Riek, R.; Choe, S. Science 2005, 307, 1317-1321 https://doi.org/10.1126/science.1106392
  9. Feig, M. Methods Mol. Biol. 2008, 443, 181-196 https://doi.org/10.1007/978-1-59745-177-2_10
  10. Chen, J.; Brooks, C. L., 3rd; Khandogin, J. Curr. Opin. Struct. Biol. 2008, 18, 140-148 https://doi.org/10.1016/j.sbi.2008.01.003
  11. Ahn, H. C.; Juranic, N.; Macura, S.; Markley, J. L. J. Am. Chem. Soc. 2006, 128, 4398-4404 https://doi.org/10.1021/ja057773d
  12. G$\ddot{u}$ntert, P.; Mumenthaler, C.; W$\ddot{u}$thrich, K. J. Mol. Biol. 1997, 273, 283-298 https://doi.org/10.1006/jmbi.1997.1284
  13. Case, D. A.; Cheatham, T. E., 3rd; Darden, T.; Gohlke, H.; Luo, R.; Merz, K. M., Jr.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R. J. J. Comput. Chem. 2005, 26, 1668-1688 https://doi.org/10.1002/jcc.20290
  14. Ponder, J. W.; Case, D. A. Adv. Protein Chem. 2003, 66, 27-85 https://doi.org/10.1016/S0065-3233(03)66002-X
  15. Onufriev, A.; Bashford, D.; Case, D. A. Proteins 2004, 55, 383-394 https://doi.org/10.1002/prot.20033
  16. Im, W.; Brooks, C. L., 3rd Proc. Natl. Acad. Sci. USA 2005, 102, 6771-6776 https://doi.org/10.1073/pnas.0408135102
  17. Linge, J. P.; Williams, M. A.; Spronk, C. A.; Bonvin, A. M.; Nilges, M. Proteins 2003, 50, 496-506 https://doi.org/10.1002/prot.10299
  18. Jelsch, C.; Teeter, M. M.; Lamzin, V.; Pichon-Pesme, V.; Blessing, R. H.; Lecomte, C. Proc. Natl. Acad. Sci. USA 2000, 97, 3171-3176 https://doi.org/10.1073/pnas.97.7.3171
  19. Chen, J.; Brooks, C. L., 3rd Phys. Chem. Chem. Phys. 2008, 10, 471-481 https://doi.org/10.1039/b714141f
  20. Koradi, R.; Billeter, M.; W$\ddot{u}$thrich, K. J. Mol. Graph 1996, 14, 51-55, 29-32 https://doi.org/10.1016/0263-7855(96)00009-4

Cited by

  1. Solution Structure of Water-soluble Mutant of Crambin and Implication for Protein Solubility vol.32, pp.5, 2011, https://doi.org/10.5012/bkcs.2011.32.5.1640
  2. Effects of generalized-Born implicit solvent models in NMR structure refinement vol.17, pp.1, 2013, https://doi.org/10.6564/JKMRS.2013.17.1.011
  3. Effects of force fields for refining protein NMR structures with atomistic force fields and generalized-Born implicit solvent model vol.18, pp.1, 2014, https://doi.org/10.6564/JKMRS.2014.18.1.024
  4. Letter to Editor: Accelerating atomistic refinement of NMR structures using Graphics Processing Unit vol.18, pp.2, 2014, https://doi.org/10.6564/JKMRS.2014.18.2.069
  5. Systematic Assessment of the Effects of an All-Atom Force Field and the Implicit Solvent Model on the Refinement of NMR Structures with Subsets of Distance Restraints vol.35, pp.7, 2014, https://doi.org/10.5012/bkcs.2014.35.7.1944
  6. The glassy state of crambin and the THz time scale protein-solvent fluctuations possibly related to protein function vol.7, pp.1, 2014, https://doi.org/10.1186/s13628-014-0008-0
  7. Comparison of NMR structures refined under implicit and explicit solvents vol.19, pp.1, 2015, https://doi.org/10.6564/JKMRS.2015.19.1.001