DOI QR코드

DOI QR Code

Differential Effects of Scopolamine on Memory Processes in the Object Recognition Test and the Morris Water Maze Test in Mice

  • Kim, Dong-Hyun (Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University) ;
  • Ryu, Jong-Hoon (Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University)
  • Published : 2008.09.30

Abstract

Several lines of evidence indicate that scopolamine as a nonselective muscarinic antagonist disrupts object recognition performance and spatial working memory when administered systemically. In the present study, we investigated the different effects of scopolamine on acquisition, consolidation, and retrieval phases of object recognition performance and spatial working memory using the object recognition and the Morris water maze tasks in mice. In the acquisition phase test, scopolamine decreased recognition index on object recognition task and the trial 1 to trial 2 differences on Morris water maze task. In the consolidation and retrieval phase tests, scopolamine also decreased recognition index on object recognition task, where as scopolamine did not exhibited any effects on the Morris water maze task.

References

  1. Abel, T. and Lattal, K. M. (2001). Molecular mechanisms of memory acquisition, consolidation and retrieval. Curr. Opin. Neurobiol. 11, 180-187 https://doi.org/10.1016/S0959-4388(00)00194-X
  2. Bertaina-Anglade, V., Enjuanes, E., Morillon, D. and Drieu la Rochelle, C. (2006). The object recognition task in rats and mice: a simple and rapid model in safety pharmacology to detect amnesic properties of a new chemical entity. J. Pharmacol. Toxicol. Methods. 54, 99-105 https://doi.org/10.1016/j.vascn.2006.04.001
  3. Bliss, T. V. and Gardner-Medwin, A. R. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the unanaestetized rabbit following stimulation of the perforant path. J. Physiol. 232, 357-374 https://doi.org/10.1113/jphysiol.1973.sp010274
  4. Bussey, T. J., Muir, J. L. and Aggleton, J. P. (1999). Functionally dissociating aspects of event memory: the effects of combined perirhinal and postrhinal cortex lesions on object and place memory in the rat. J. Neurosci. 19, 495-502 https://doi.org/10.1523/JNEUROSCI.19-01-00495.1999
  5. Collinson, N., Atack, J. R., Laughton, P., Dawson, G. R. and Stephens, D. N. (2006). An inverse agonist selective for a5 subunit-containing $GABA_A$ receptors improves encoding and recall but not consolidation in the Morris water maze. Psychopharmacology (Berl). 188, 619-628 https://doi.org/10.1007/s00213-006-0361-z
  6. Ennaceur, A. and Delacour, J. (1988). A new one-trial test for neurobiological studies of memory in rats: I. Behavioral data. Behav. Brain. Res. 31, 47-59 https://doi.org/10.1016/0166-4328(88)90157-X
  7. Ennaceur, A., Neave, N. and Aggleton, J. P. (1996). Spontaneous object recognition and object location memory in rats: the effects of lesions in the cingulate cortices, the medial prefrontal cortex, the cingulum bundle and the fornix. Exp. Brain. Res. 113, 509-519 https://doi.org/10.1007/PL00005603
  8. Everitt, B. J. and Robbins, T. W. (1997). Central cholinergic systems and cognition. Annu. Rev. Psychol. 48, 649-684 https://doi.org/10.1146/annurev.psych.48.1.649
  9. Hammond, R. S., Tull, L. E. and Stackman, R. W. (2004). On the delay-dependent involvement of the hippocampus in object recognition memory. Neurobiol. Learn. Mem. 82, 26-34 https://doi.org/10.1016/j.nlm.2004.03.005
  10. Jouvenceau, A., Billard, J. M., Lamour, Y. and Dutar, P. (1996). Persistence of CA1 hippocampal LTP after selective cholinergic denervation. Neuroreport 7, 948-52 https://doi.org/10.1097/00001756-199603220-00024
  11. Kim, D. H., Yoon, B. H., Kim, Y. W., Lee, S., Shin, B. Y., Jung, J. W., Kim, H. J., Lee, Y. S., Choi, J. S., Kim, S. Y., Lee, K. T., Ryu, J. H. (2007). The seed extract of Cassia obtusifolia ameliorates learning and memory impairments induced by scopolamine or transient cerebral hypoperfusion in mice. J. Pharmacol. Sci. 105, 82-93 https://doi.org/10.1254/jphs.FP0061565
  12. Malenka, R. C. (2003). The long-term potential of LTP. Nat. Rev. Neurosci. 4, 923-926 https://doi.org/10.1038/nrn1258
  13. Massey, P. V., Warburton, E. C., Wynick, D., Brown, M. W. and Bashir, Z. I. (2003). Galanin regulates spatial memory but not visual recognition memory or synaptic plasticity in perirhinal cortex. Neuropharmacology 44, 40-48 https://doi.org/10.1016/S0028-3908(02)00297-6
  14. Molchan, S. E., Martinez, R. A., Hill, J. L., Weingartner, H. J., Thompson, K., Vitiello, B. and Sunderland, T. (1992). Increased cognitive sensitivity to scopolamine with age and a perspective on the scopolamine model. Brain Res. Rev. 17, 215-226 https://doi.org/10.1016/0165-0173(92)90017-G
  15. Mumby, D. G. and Pinel, J. P. (1994). Rhinal cortex lesions and object recognition in rats. Behav. Neurosci. 108, 11-8 https://doi.org/10.1037/0735-7044.108.1.11
  16. Norman, G., Brooks, S. P., Hennebry, G. M., Eacott, M. J. and Little, H. J. (2002). Nimodipine prevents scopolamine-induced impairments in object recognition. J. Psychopharmacol. 16, 153-161 https://doi.org/10.1177/026988110201600206
  17. Norman, G. and Eacott, M. J. (2004). Impaired object recognition with increasing levels of feature ambiguity in rats with perirhinal cortex lesions. Behav. Brain. Res. 148, 79-91 https://doi.org/10.1016/S0166-4328(03)00176-1
  18. Prickaerts, J., Sik, A., van der Staay, F. J., de Vente, J. and Blokland, A. (2005). Dissociable effects of acetylcholinesterase inhibitors and phosphodiesterase type 5 inhibitors on object recognition memory: acquisition versus consolidation. Psychopharmacology (Berl) 177, 381-390 https://doi.org/10.1007/s00213-004-1967-7
  19. Riekkinen, M. and Riekkinen, P. Jr. (1997). Dorsal hippocampal muscarinic acetylcholine and NMDA receptors disrupt water maze navigation. Neuroreport 8, 645-648 https://doi.org/10.1097/00001756-199702100-00013
  20. Riekkinen, P. Jr., Sirvio, J., Aaltonen, M. and Riekkinen, P. Effects of concurrent manipulations of nicotinic and muscarinic receptors on spatial and passive avoidance learning. Pharmacol. Biochem. Behav. 37, 405-410
  21. Vannucchi, M. G., Scali, C., Kopf, S. R., Pepeu, G. and Casamenti, F. (1997). Selective muscarinic antagonists differentially affect in vivo acetylcholine release and memory performances of young and aged rats. Neuroscience 79, 837-846 https://doi.org/10.1016/S0306-4522(97)00091-2
  22. Wan, H., Aggleton, J. P. and Brown, M. W. (1999). Different contributions of the hippocampus and perirhinal cortex to recognition memory. J. Neurosci. 19, 1142-1148 https://doi.org/10.1523/JNEUROSCI.19-03-01142.1999
  23. Warburton, E. C., Koder, T., Cho, K., Massey, P. V., Duguid, G., Barker, G. R. Aggleton, J. P., Bashir, Z. I. and Brown, M. W. (2003). Cholinergic neurotransmission is essential for perirhinal cortical plasticity and recognition memory. Neuron 38, 987-996 https://doi.org/10.1016/S0896-6273(03)00358-1
  24. Whishaw, I. Q. (1985). Formation of a place learning-set by the rat: a new paradigm for neurobehavioral studies. Physiol. Behav. 35, 139-143 https://doi.org/10.1016/0031-9384(85)90186-6

Cited by

  1. Distinct roles of the hippocampus and perirhinal cortex in GABAA receptor blockade-induced enhancement of object recognition memory vol.1552, 2014, https://doi.org/10.1016/j.brainres.2014.01.024
  2. cAMP/PKA signaling pathway contributes to neuronal apoptosis via regulating IDE expression in a mixed model of type 2 diabetes and Alzheimer's disease 2017, https://doi.org/10.1002/jcb.26321
  3. Lactucopicrin ameliorates oxidative stress mediated by scopolamine-induced neurotoxicity through activation of the NRF2 pathway vol.99, 2016, https://doi.org/10.1016/j.neuint.2016.06.010
  4. GABAA Receptor Blockade Enhances Memory Consolidation by Increasing Hippocampal BDNF Levels vol.37, pp.2, 2012, https://doi.org/10.1038/npp.2011.189
  5. Evidences of the role of the rodent hippocampus in the non-spatial recognition memory vol.297, 2016, https://doi.org/10.1016/j.bbr.2015.10.018
  6. Insulin degrading enzyme contributes to the pathology in a mixed model of Type 2 diabetes and Alzheimer’s disease: possible mechanisms of IDE in T2D and AD vol.38, pp.1, 2017, https://doi.org/10.1042/BSR20170862
  7. Curcumin Exerts Effects on the Pathophysiology of Alzheimer’s Disease by Regulating PI(3,5)P2 and Transient Receptor Potential Mucolipin-1 Expression vol.8, pp.1664-2295, 2017, https://doi.org/10.3389/fneur.2017.00531
  8. Comparison of scopolamine-induced cognitive impairment responses in three different ICR stocks vol.34, pp.4, 2018, https://doi.org/10.5625/lar.2018.34.4.317