Fabrication of TiO2 Impregnated Stainless Steel Fiber Photocatalyts and Evaluation of Photocatalytic Activity

TiO2 담지 스테인리스 강 섬유 광촉매 제조 및 광촉매 활성 평가

  • Song, Sun-Jung (Center for Functional Nano Fine Chemicals & School of Applied Chemical Engineering, Chonnam National University) ;
  • Kim, Kyoung Seok (Center for Functional Nano Fine Chemicals & School of Applied Chemical Engineering, Chonnam National University) ;
  • Kim, Kyung Hwan (Center for Functional Nano Fine Chemicals & School of Applied Chemical Engineering, Chonnam National University) ;
  • Li, Hui Jie (Center for Functional Nano Fine Chemicals & School of Applied Chemical Engineering, Chonnam National University) ;
  • Cho, Dong Lyun (Center for Functional Nano Fine Chemicals & School of Applied Chemical Engineering, Chonnam National University) ;
  • Kim, Jong Beom (Photo & Environment Technology Co, Ltd.) ;
  • Park, Hee Ju (Photo & Environment Technology Co, Ltd.) ;
  • Shon, Hokyong (Faculty of Engineering, University of Technology, Sydney) ;
  • Kim, Jong-Ho (Center for Functional Nano Fine Chemicals & School of Applied Chemical Engineering, Chonnam National University)
  • 송선정 (전남대학교 응용화학공학부, BK21 기능성나노신화학소재사업단) ;
  • 김경석 (전남대학교 응용화학공학부, BK21 기능성나노신화학소재사업단) ;
  • 김경환 (전남대학교 응용화학공학부, BK21 기능성나노신화학소재사업단) ;
  • 이휘지 (전남대학교 응용화학공학부, BK21 기능성나노신화학소재사업단) ;
  • 조동련 (전남대학교 응용화학공학부, BK21 기능성나노신화학소재사업단) ;
  • 김종범 ((주)빛과환경 환경기술연구소) ;
  • 박희주 ((주)빛과환경 환경기술연구소) ;
  • 손호경 (시드니공과대학교 환경공학부) ;
  • 김종호 (전남대학교 응용화학공학부, BK21 기능성나노신화학소재사업단)
  • Received : 2008.10.01
  • Accepted : 2008.10.17
  • Published : 2008.12.10

Abstract

$TiO_2$ impregnated stainless steel fiber photocatalysts ($TiO_2/SSF$) were fabricated to overcome inherent problems of powdery $TiO_2$ photocatalysts in water treatment. Adhesion strength of the impregnated $TiO_2$ was examined using an ultrasonic-cleaner. Photocatalytic activity was evaluated through decomposition experiment of methylene blue and formic acid. Bactericidal efficiency was evaluated through sterilization experiment of E. Coli and Vibrio Vulnificus. Adhesion strength of the impregnated $TiO_2$ was so high that more than 95% was left over even after the treatment in an ultrasonic-cleaner for 30 min. Methylene blue and formic acid were decomposed as much as 60% and 38% of the initial concentration and more than 99.9% of E. Coli and Vibrio Vulnificus were killed after 1 hour exposure to the prepared photocatalyst under UV irradiation. In the case of decomposition of formic acid, decomposition ratio increased if oxidants were added. Especially the decomposition ratio increased as high as 80% when hydrogen peroxide was added as an oxidant.

Keywords

water treatment;$TiO_2$ photocatalyst supported on stainless steel fiber;photocatalytic efficiency

Acknowledgement

Supported by : 한국학술진흥재단

References

  1. A. L. Pruden and D. F. Ollis, J. Catal., 82, 404 (1983). https://doi.org/10.1016/0021-9517(83)90207-5
  2. D. L. Cho, H. Min, J.-H. Kim, G.-S. Cha, G.-S. Kim, B. H. Kim, and S.-H. Ohk, J. Ind. Eng. Chem., 13, 434 (2007).
  3. K. Sunada, T. Watanabe, and K. Hashimoto, J. Photochem. Photobiol. A: Chemistry, 156, 227 (2003). https://doi.org/10.1016/S1010-6030(02)00434-3
  4. J.-H. Kim, D.-L. Cho, B.-C. Choi, and S.-J. Song, Proc. Application of TiO2 Photocatalyst in Water Treatment, 7th Intern. Confer. on Ecomater., 7. 3-8, Singapore (2005).
  5. J. J. Rook, J. Water Treat. Exam., 23, 234 (1974).
  6. J. D. Oliver, Vibrio vulnificus. In: Foodborne Bacterial Pathogens, ed. M. P. Doyle, 569. Marcel Dekker, New York (1989).
  7. C. Wei, W. Y. Lin, Z. Zainal, N. E. Willams, K. Zhu, A. P. Kruzic, R. L. Smith, and K. Rajeshwar, Environ. Sci. Technol., 28, 934 (1994). https://doi.org/10.1021/es00054a027
  8. E. Brillasa, E. Mur, R. Sauleda, L. Sànchez, J. Peral, X. Domènech, and J. Casado, App. Catal. B: Environ., 16, 31 (1998). https://doi.org/10.1016/S0926-3373(97)00059-3
  9. R. S. Sonawane, S. G. Hegde, and M. K. Dongare, Mater. Chem. and Phy., 77, 744 (2002).
  10. A. L. Pruden and D. F. Ollis, Environ. Sci. Technol., 17, 628 (1983). https://doi.org/10.1021/es00116a013
  11. K. Honda and A. Fujishima, Nature, 238, 30 (1972).
  12. Y. Kuboto, T. Shuin, C. Kawasaki, M. Hosaka, H. Kitamura, R. Cai, H. Sakai, K. Hashimoto, and A. Fujishima, Br. J. Cancer, 70, 1107 (1994). https://doi.org/10.1038/bjc.1994.456
  13. K. Kato, A. Tsuzuki, Y. Totii, H. Taoda, T. Kato, and Y. Butsugan, J. Mater. Sci., 30, 837 (1995). https://doi.org/10.1007/BF00356349
  14. C. Minero, E. Pelizzetti, P. Pichat, M. Sega, and M. Vincenti, Environ. Sci. Technol. 29, 2226 (1995). https://doi.org/10.1021/es00009a012
  15. T. Kawai and T. Sakata, Nature, 286, 474 (1980). https://doi.org/10.1038/286474a0
  16. R. Vencatadri and R. W. Peter, Haz. Waste & Haz. Mater., 10, 107 (1993). https://doi.org/10.1089/hwm.1993.10.107
  17. Y. Takahashi, K. Mita, H. Toyoki, and M. J. Kume, Mater. Sci., 24, 243 (1989). https://doi.org/10.1007/BF00660961
  18. E. A. Barringer and H. K. Bowen, Langmuir. 1, 414 (1985). https://doi.org/10.1021/la00064a005
  19. R. H. Ching and Y. S. Hung, J. Hazar. Mater., 41, 47 (1995). https://doi.org/10.1016/0304-3894(94)00093-V