연소전 이산화탄소 포집을 위한 N-methyldiethanolamine과 Piperazine 혼합 수용액의 이산화탄소 흡수

Absorption of CO2 Using Mixed Aqueous Solution of N-methyldiethanolamine with Piperazine for Pre-combustion CO2 Capture

  • 장원진 (한국에너지기술연구원 온실가스연구센터) ;
  • 윤여일 (한국에너지기술연구원 온실가스연구센터) ;
  • 박상도 (한국에너지기술연구원 이산화탄소저감및처리사업단) ;
  • 이영우 (충남대학교 바이오응용화학부) ;
  • 백일현 (한국에너지기술연구원 온실가스연구센터)
  • Jang, Won Jin (Greenhouse Gas Research Center, Korea Institute of Energy Research) ;
  • Yoon, Yeo Il (Greenhouse Gas Research Center, Korea Institute of Energy Research) ;
  • Park, Sang Do (Carbon Dioxide Reduction & Sequestration R&D Center, Korea Institute of Energy Research) ;
  • Rhee, Young Woo (Department of Bio-Applied Chemistry, Chungnam National University) ;
  • Baek, Il Hyun (Greenhouse Gas Research Center, Korea Institute of Energy Research)
  • 투고 : 2008.09.07
  • 심사 : 2008.10.28
  • 발행 : 2008.12.10

초록

본 연구에서는 30, 40, 50 wt% MDEA (N-methyldiethanolamine) 수용액을 이용하여 0~50 bar, $40{\sim}80^{\circ}C$의 조업조건에서 이산화탄소 흡수평형실험을 수행하여 연소전 이산화탄소 포집에 적용 가능한 고압조건에 대한 정보를 알고자 하였다. 또한 MDEA의 반응 속도를 증가시키기 위하여 piperazine 5.0~10.0 wt%를 첨가한 후 이산화탄소 흡수실험을 수행하였다. 그 결과 수용액 상 MDEA의 농도, 반응 온도가 증가함에 따라 평형 압력이 증가하였으며 반응온도가 높을수록 흡수속도가 증가하였다. Piperazine을 첨가한 MDEA 수용액은 MDEA 40 wt% 단독 흡수제에 비해 초기 반응에서 2.5배에 가까운 반응속도와 16% 가량 증대된 흡수능을 보였다.

키워드

absorption;carbon dioxide;high pressure;MDEA;piperazine

과제정보

연구 과제 주관 기관 : 과학기술부

참고문헌

  1. G.-W. Xu, C.-F. Zhang, S.-J. Qin, and Y.-W. Wang, Ind. Eng. Chem. Res., 31, 921 (1992). https://doi.org/10.1021/ie00003a038
  2. H. Liu, G. Xu, C. Zhan, and Y. Wu, J. East China Univ. Sci. Technol., 25, 242 (1999).
  3. F. Y. Jou, J. J. Carroll, A. E. Mather, and F. D. Otto, Can. J. Chem. Eng., 71, 264 (1993). https://doi.org/10.1002/cjce.5450710213
  4. S.-W. Rho, K.-P. Yoo, J. S. Lee, S. C. Nam, J. E. Son, and B.-M. Min, J. Chem. Eng. Data, 42, 1161 (1997). https://doi.org/10.1021/je970097d
  5. B. M. Min, Korea Institute of Energy Rearchb (KIER), KIER-943117 (1995)
  6. T. Vall and R. Veldman, CEP, 67 (1991).
  7. R. M. Davidson, Asia Clean Energy Forum, Manila (2007).
  8. G.-W. Xu, C.-F. Zhang, and S.-J. Qin, W.-H. Gao, H.-B. Liu, Ind. Eng. Chem. Res., 37, 1473 (1998). https://doi.org/10.1021/ie9506328
  9. S. H. Huang and H. J. Ng, GPA Rearch Report, RR-155, 8 (1998).
  10. R. Pruschek, G. Oeljeklaus, V. Brand, G. Haupt, G. Zimmermann, and J. S. Ribberink, Energy Conversion and Management, 36, 797 (1995). https://doi.org/10.1016/0196-8904(95)00124-V
  11. P. H. M. Feron, International Test Network for CO2 Capture: report in 3rd workshop, Apeldoorn, Netherlands (2002).
  12. M. K. Park and O. C. Sandall, J. Chem. Eng. Data, 46, 166 (2001). https://doi.org/10.1021/je000190t
  13. H. K. Park, H. J. Park, and B. S. Kang, DCER Techinfo part I, 3, 100 (2004)
  14. 2005 IPCC Special Report on Carbon Dioxide Capture and Storage, available on http://www.ipcc.ch.
  15. U. S. Patent 4, 336, 233 (1982).
  16. P. Chiesa and S. Consonni, J. Eng. Gas Turbines Power, 121, 295 (1999). https://doi.org/10.1115/1.2817120
  17. C. M. White, R. R. Strazisar, E. J. Granite, J. S. Hoffman, and H. W. Pennline, J. Air Waste Manage. Assoc., 53, 645 (2003). https://doi.org/10.1080/10473289.2003.10466206
  18. D. M. Austgen, G. T. Rochelle, and C. C. Chen, Ind. Eng. Chem. Res., 30, 543 (1991). https://doi.org/10.1021/ie00051a016
  19. C. Mathonat, V. Majer, A. E. Mather, and J.-P. E. Grolier, Fluid Phase Equilibria, 140, 171 (1997). https://doi.org/10.1016/S0378-3812(97)00182-9
  20. G.-W. Xu, C.-F. Zhang, and S.-J. Qin, J. Chem. Eng. Chin. Univ., 44, 677 (1993).
  21. G. Ordorica-Garcia, P. Douglas, E. Croiset, and L. Zheng, Energy Conversion and Management, 47, 2250 (2006). https://doi.org/10.1016/j.enconman.2005.11.020
  22. M. Aineto, A. Acosta, J. Ma. Rincon, and M. Romero, Fuel, 85, 2352 (2006). https://doi.org/10.1016/j.fuel.2006.05.015
  23. S. Bishnoi and G. T. Rochelle, AIChE Journal, 48, (2002). https://doi.org/10.1002/aic.690480102
  24. D. Heaven, J. Mak, D. Kubek, M. Clark, and C. Sharp, Gasification Technologies Conference, Washington D.C, USA (2004).
  25. P. J. G. Huttenhuis, N. J. Agrawal, J. A. Hogendoorn, and G. F. Versteeg, Journal of Petroleum Science and Engineering, 55, 122 (2007). https://doi.org/10.1016/j.petrol.2006.04.018
  26. D. J. Seo and W. H. Hong, Korean J. Chem. Eng., 37, 593 (1999).
  27. I. H. Beak, Korea Institute of Energy Research (KIER), KIER-973406 (1997).
  28. U. S. Department of Energy, National Energy Technology Laboratory 3rd Annual Conference, Alexandria, Virginia (2004)
  29. Y. W. Wang, M.S. Thesis, East China University of Chemical Technology (1998).
  30. I. H. Lee, S. I. Kim, and J. Y. Park, Ind. Chem., 18, 239 (2007).
  31. H. D. Hwang, H. Y. Shin, H. H. Kwak, and S. Y. Bae, Korean Chem. Eng. Res., 44, 588 (2006).
  32. X. Zhang, C.-F. Zhang, G.-W. Xu, W.-H. Gao, and Y.-Q. Wu, Ind. Eng. Chem. Res., 40, 898 (2001). https://doi.org/10.1021/ie000055+
  33. W. J Rogers, J. A. Bullin, and R. R. Davison, AIChE J., 44, 2423 (1998). https://doi.org/10.1002/aic.690441110
  34. M. Kanniche and C. Bouallou, Applied Thermal Engineering, 27, 2693 (2007). https://doi.org/10.1016/j.applthermaleng.2007.04.007
  35. X. Zhang, J. Wang, C.-F. Zhang, Y.-H. Yang, and J.-J. Xu, Ind. Eng. Chem. Res., 42, 118 (2003). https://doi.org/10.1021/ie020223t
  36. B. Lemoine, Y.-F. Li, R. Cadours, C. Bouallou, and D. Richon, Fluid Phase Equilib., 172, 261 (2000). https://doi.org/10.1016/S0378-3812(00)00383-6