Absorption of CO2 Using Mixed Aqueous Solution of N-methyldiethanolamine with Piperazine for Pre-combustion CO2 Capture

연소전 이산화탄소 포집을 위한 N-methyldiethanolamine과 Piperazine 혼합 수용액의 이산화탄소 흡수

  • Jang, Won Jin (Greenhouse Gas Research Center, Korea Institute of Energy Research) ;
  • Yoon, Yeo Il (Greenhouse Gas Research Center, Korea Institute of Energy Research) ;
  • Park, Sang Do (Carbon Dioxide Reduction & Sequestration R&D Center, Korea Institute of Energy Research) ;
  • Rhee, Young Woo (Department of Bio-Applied Chemistry, Chungnam National University) ;
  • Baek, Il Hyun (Greenhouse Gas Research Center, Korea Institute of Energy Research)
  • 장원진 (한국에너지기술연구원 온실가스연구센터) ;
  • 윤여일 (한국에너지기술연구원 온실가스연구센터) ;
  • 박상도 (한국에너지기술연구원 이산화탄소저감및처리사업단) ;
  • 이영우 (충남대학교 바이오응용화학부) ;
  • 백일현 (한국에너지기술연구원 온실가스연구센터)
  • Received : 2008.09.07
  • Accepted : 2008.10.28
  • Published : 2008.12.10

Abstract

In this study, the new solubility data at high pressure condition applicable to pre-combustion $CO_2$ capture system were found. Experiments were conducted within the temperature range of $40{\sim}80^{\circ}C$ while increasing the pressure from 0 to 50 bar. The effect of MDEA (N-methyldiethanolamine) concentration was studied by varying the concentration from 30 to 50 wt%. In order to improve the absorption rate of MDEA, piperazine was added in ranging of 5~10 wt% into the MDEA solution as a activator. From this experiment, the equilibrium partial pressure was increased with increasing MDEA concentration in absorbent and reaction temperature. Also absorption rate was increased with increasing the reaction temperature. It was noted that the mixture of piperazine and MDEA aqueous solution showed faster absorption rate by 2.5 times than only the MDEA aqueous solution with 40 wt% cencentration at initial reaction stage and also increased absorption capacity by 16%.

Keywords

absorption;carbon dioxide;high pressure;MDEA;piperazine

Acknowledgement

Supported by : 과학기술부

References

  1. G.-W. Xu, C.-F. Zhang, S.-J. Qin, and Y.-W. Wang, Ind. Eng. Chem. Res., 31, 921 (1992). https://doi.org/10.1021/ie00003a038
  2. H. Liu, G. Xu, C. Zhan, and Y. Wu, J. East China Univ. Sci. Technol., 25, 242 (1999).
  3. F. Y. Jou, J. J. Carroll, A. E. Mather, and F. D. Otto, Can. J. Chem. Eng., 71, 264 (1993). https://doi.org/10.1002/cjce.5450710213
  4. S.-W. Rho, K.-P. Yoo, J. S. Lee, S. C. Nam, J. E. Son, and B.-M. Min, J. Chem. Eng. Data, 42, 1161 (1997). https://doi.org/10.1021/je970097d
  5. B. M. Min, Korea Institute of Energy Rearchb (KIER), KIER-943117 (1995)
  6. T. Vall and R. Veldman, CEP, 67 (1991).
  7. R. M. Davidson, Asia Clean Energy Forum, Manila (2007).
  8. G.-W. Xu, C.-F. Zhang, and S.-J. Qin, W.-H. Gao, H.-B. Liu, Ind. Eng. Chem. Res., 37, 1473 (1998). https://doi.org/10.1021/ie9506328
  9. S. H. Huang and H. J. Ng, GPA Rearch Report, RR-155, 8 (1998).
  10. R. Pruschek, G. Oeljeklaus, V. Brand, G. Haupt, G. Zimmermann, and J. S. Ribberink, Energy Conversion and Management, 36, 797 (1995). https://doi.org/10.1016/0196-8904(95)00124-V
  11. P. H. M. Feron, International Test Network for CO2 Capture: report in 3rd workshop, Apeldoorn, Netherlands (2002).
  12. M. K. Park and O. C. Sandall, J. Chem. Eng. Data, 46, 166 (2001). https://doi.org/10.1021/je000190t
  13. H. K. Park, H. J. Park, and B. S. Kang, DCER Techinfo part I, 3, 100 (2004)
  14. 2005 IPCC Special Report on Carbon Dioxide Capture and Storage, available on http://www.ipcc.ch.
  15. U. S. Patent 4, 336, 233 (1982).
  16. P. Chiesa and S. Consonni, J. Eng. Gas Turbines Power, 121, 295 (1999). https://doi.org/10.1115/1.2817120
  17. C. M. White, R. R. Strazisar, E. J. Granite, J. S. Hoffman, and H. W. Pennline, J. Air Waste Manage. Assoc., 53, 645 (2003). https://doi.org/10.1080/10473289.2003.10466206
  18. D. M. Austgen, G. T. Rochelle, and C. C. Chen, Ind. Eng. Chem. Res., 30, 543 (1991). https://doi.org/10.1021/ie00051a016
  19. C. Mathonat, V. Majer, A. E. Mather, and J.-P. E. Grolier, Fluid Phase Equilibria, 140, 171 (1997). https://doi.org/10.1016/S0378-3812(97)00182-9
  20. G.-W. Xu, C.-F. Zhang, and S.-J. Qin, J. Chem. Eng. Chin. Univ., 44, 677 (1993).
  21. G. Ordorica-Garcia, P. Douglas, E. Croiset, and L. Zheng, Energy Conversion and Management, 47, 2250 (2006). https://doi.org/10.1016/j.enconman.2005.11.020
  22. M. Aineto, A. Acosta, J. Ma. Rincon, and M. Romero, Fuel, 85, 2352 (2006). https://doi.org/10.1016/j.fuel.2006.05.015
  23. S. Bishnoi and G. T. Rochelle, AIChE Journal, 48, (2002). https://doi.org/10.1002/aic.690480102
  24. D. Heaven, J. Mak, D. Kubek, M. Clark, and C. Sharp, Gasification Technologies Conference, Washington D.C, USA (2004).
  25. P. J. G. Huttenhuis, N. J. Agrawal, J. A. Hogendoorn, and G. F. Versteeg, Journal of Petroleum Science and Engineering, 55, 122 (2007). https://doi.org/10.1016/j.petrol.2006.04.018
  26. D. J. Seo and W. H. Hong, Korean J. Chem. Eng., 37, 593 (1999).
  27. I. H. Beak, Korea Institute of Energy Research (KIER), KIER-973406 (1997).
  28. U. S. Department of Energy, National Energy Technology Laboratory 3rd Annual Conference, Alexandria, Virginia (2004)
  29. Y. W. Wang, M.S. Thesis, East China University of Chemical Technology (1998).
  30. I. H. Lee, S. I. Kim, and J. Y. Park, Ind. Chem., 18, 239 (2007).
  31. H. D. Hwang, H. Y. Shin, H. H. Kwak, and S. Y. Bae, Korean Chem. Eng. Res., 44, 588 (2006).
  32. X. Zhang, C.-F. Zhang, G.-W. Xu, W.-H. Gao, and Y.-Q. Wu, Ind. Eng. Chem. Res., 40, 898 (2001). https://doi.org/10.1021/ie000055+
  33. W. J Rogers, J. A. Bullin, and R. R. Davison, AIChE J., 44, 2423 (1998). https://doi.org/10.1002/aic.690441110
  34. M. Kanniche and C. Bouallou, Applied Thermal Engineering, 27, 2693 (2007). https://doi.org/10.1016/j.applthermaleng.2007.04.007
  35. X. Zhang, J. Wang, C.-F. Zhang, Y.-H. Yang, and J.-J. Xu, Ind. Eng. Chem. Res., 42, 118 (2003). https://doi.org/10.1021/ie020223t
  36. B. Lemoine, Y.-F. Li, R. Cadours, C. Bouallou, and D. Richon, Fluid Phase Equilib., 172, 261 (2000). https://doi.org/10.1016/S0378-3812(00)00383-6