Effect of Toluene Added to Casting Solution on Characteristic of Phase Inversion Polysulfone Membrane

상전환 공정에 의한 폴리설폰막의 제조에 있어 제막용액에 첨가된 톨루엔의 영향

  • Choi, Seung-Rag (Chemical Engineering, Division of Applied Bio-Chemistry, Chungnam National University) ;
  • Park, So-Jin (Chemical Engineering, Division of Applied Bio-Chemistry, Chungnam National University) ;
  • Seo, Bum-Kyoung (Division of Decommissioning Technology Development, Korea Atomic Energy Research Institute) ;
  • Lee, Kune Woo (Division of Decommissioning Technology Development, Korea Atomic Energy Research Institute) ;
  • Han, Myeong-Jin (Department of Display and Chemical Engineering, Kyungil University)
  • 최승락 (충남대학교 화학공학과) ;
  • 박소진 (충남대학교 화학공학과) ;
  • 서범경 (한국원자력연구소 제염해체기술연구부) ;
  • 이근우 (한국원자력연구소 제염해체기술연구부) ;
  • 한명진 (경일대학교 디스플레이화학공학과)
  • Received : 2008.08.29
  • Accepted : 2008.10.10
  • Published : 2008.12.10

Abstract

Polysulfone membranes were prepared via the phase inversion process. Toluene was added as a nonsolvent additive in the casting solution containing a mixture of polysulfone and n-methylpyrrolidone. When prepared via the diffusion-induced process using isopropanol as a precipitation nonsolvent, the solidified membranes revealed a similar asymmetric structure irrespective of the addition of toluene, presenting both a dense skin layer and a sponge-like support layer. The added toluene played a role of enhancing liquid-liquid phase separation of the casting solution, and skin layer thickness of a prepared membrane increased with toluene content in the casting solution. On membrane performance, the solute rejection showed a uniform behavior irrespective of the addition of toluene. However, in spite of the significant increase in dense skin layer thickness, the water permeation through the membrane prepared with 60 wt% toluene revealed five times as much flux, compared with that of the membrane prepared without toluene additive.

Keywords

membrane;phase inversion;polysulfone;nonsolvent additive;permeation

References

  1. I. Cabasso, E. Klein, and J. K. Smith, J. Appl. Polym. Sci., 20, 2377 (1976). https://doi.org/10.1002/app.1976.070200908
  2. B. Chakrabarty, A. K. Ghoshal, and M. K. Purkait, J. Membrane Sci., 315, 36 (2008). https://doi.org/10.1016/j.memsci.2008.02.027
  3. CRC Handbook of Solubility Parameters and Other Cohesion Parameters, ed. A. F. M. Barton, CRC Press,: Boca Raton, FL, 4th ed. (1991).
  4. Principles of Polymer Systems, ed. F. Rodriguez, McGraw-Hill, New York, 2nd ed. (1982).
  5. F. W. Altena and C. A. Smolders, Macromolecules. 15, 1491 (1982). https://doi.org/10.1021/ma00234a008
  6. P. Radovanivic, S. W. Thiel, and S. T. Hwang, J. Membrane Sci., 65, 213 (1992). https://doi.org/10.1016/0376-7388(92)87024-R
  7. J. G. Wijmans, J. Knat, H. H. V. Mulder, and C. A. Smolders, Polymer, 26, 1539 (1985). https://doi.org/10.1016/0032-3861(85)90090-4
  8. M. J. Han and S. T. Nam, J. Membrane Sci., 202, 55 (2002). https://doi.org/10.1016/S0376-7388(01)00718-9
  9. J. A. Riddick, W. B. Bunger, and T. K Sakano, Organic Solvents Physical Properties and Methods of Purification, 4th ed., John Wiley & Sons, New York (1986).
  10. S. S. Kim and D. R. Lloyd, Polymer, 33, 1026 (1992). https://doi.org/10.1016/0032-3861(92)90019-S
  11. C. Cohen, G. B. Tanny, and S. Prager, J. Polym. Sci. Polym. Phys., 17, 477 (1979). https://doi.org/10.1002/pol.1979.180170312
  12. E. Royte, A tall, cool drink of sewage?, New York Times, Aug. 8 (2008).
  13. A. J. Reuvers, F. W. Altena, and C. A. Smolders, J. Polym. Sci. Polym. Phys., 24, 793 (1986). https://doi.org/10.1002/polb.1986.090240406
  14. R. C. Reid, J. M. Prausnitz, and T. K. Gherwood, The Properties of Gases and Liquids, 3rd ed., McGraw-Hill, New York (1977).
  15. I. M. Wienk, R. M. Boom, M. A. M. Beerlage, A. M. W. Bulte, C. A. Smolders, and H. Strathmann, J. Membrane Sci., 113, 361 (1996). https://doi.org/10.1016/0376-7388(95)00256-1
  16. M. J. Han, Desalination, 121, 31 (1999). https://doi.org/10.1016/S0011-9164(99)00005-3
  17. Polymer Handbook, eds. J. Brandrup, H. Immergut, and E. A. Grulke, Wiley, New York, 4th ed. (1999).
  18. S. T. Nam and M. J. Han, Membrane J., 11, 89 (2001).
  19. G. E. Gaids and A. J. McHugh, Polymer, 30, 2118 (1989). https://doi.org/10.1016/0032-3861(89)90303-0
  20. M. J. Han and D. Bhattacharyya, J. Membrane Sci., 98, 191 (1995). https://doi.org/10.1016/0376-7388(94)00181-W
  21. R. M. Boom, I. M. Wienk, Th. Van den Boomgaard, and C. A. Smolders, J. Membrane Sci., 73, 277 (1992). https://doi.org/10.1016/0376-7388(92)80135-7
  22. C. M. Tam, M. Dal-Cin, and M. D. Guiver, J. Membrane Sci., 78, 123 (1993). https://doi.org/10.1016/0376-7388(93)85254-T