Characteristic Analysis of GTL Fuel as an Automobile Diesel

자동차용 경유로서 GTL의 연료특성분석

  • Lim, Young-Kwan (Research Center, Korea Institute of Petroleum Quality) ;
  • Shin, Seong-Cheol (Research Center, Korea Institute of Petroleum Quality) ;
  • Kim, Jong-Ryeol (Research Center, Korea Institute of Petroleum Quality) ;
  • Yim, Eui-Soon (Research Center, Korea Institute of Petroleum Quality) ;
  • Song, Hung-Og (Research Center, Korea Institute of Petroleum Quality) ;
  • Kim, Dongkil (Research Center, Korea Institute of Petroleum Quality)
  • 임영관 (한국석유품질관리원 연구센터) ;
  • 신성철 (한국석유품질관리원 연구센터) ;
  • 김종렬 (한국석유품질관리원 연구센터) ;
  • 임의순 (한국석유품질관리원 연구센터) ;
  • 송흥옥 (한국석유품질관리원 연구센터) ;
  • 김동길 (한국석유품질관리원 연구센터)
  • Received : 2008.07.24
  • Accepted : 2008.10.17
  • Published : 2008.12.10

Abstract

GTL (gas-to-liquid) fuel produced by the Fischer-Tropsch reaction of carbon monoxide (CO) and hydrogen ($H_2$) is expected to be one of the environmental friendly biomass based alternatives and blended to petrodiesel. In this study, the characteristic of the fuel was analyzed by its concentration differences after blending petrodiesel in domestic market with different amounts of GTL fuel which produced from Shell. Gas chromatography shows that GTL fuel consists of longer paraffin chain than common diesel. GTL fuel showed a high flash point, distillation, kinematic viscosity, and derived cetane number. In addition, GTL fuel showed lower lubricity due to low sulfur content.

Keywords

GTL (gas to liquid);diesel;cetane number;fuel characters

References

  1. http://www.geni.org/globalenergy/policy/renewableenergy/index.shtml
  2. E. Lotero, Y. Liu, D. E. Lopez, K. Suwannakarn, D. A. Bruce, and J. G. Goodwin Jr, Ind. Eng. Chem. Res., 44, 5353 (2005). https://doi.org/10.1021/ie049157g
  3. M. Balat, H. Balat, and C. Oz, Progress in Energy and Combustion Science, 34, 551 (2008). https://doi.org/10.1016/j.pecs.2007.11.001
  4. T. C. Ezeji, N. Qureshi, and H. P. Blaschek, Curr. Opinion in Biotech., 18, 220 (2007). https://doi.org/10.1016/j.copbio.2007.04.002
  5. T. Wang, J. Wang, and Y. Jin, Ind. Eng. Chem. Res., 46, 5824 (2007). https://doi.org/10.1021/ie070330t
  6. Y. Cao, Z, Gao, J. Jin, H. Zhou, M. Cohron, H. Zhao, H. Liu, and W. Pan, Energy & Fuels, 22, 1720 (2008). https://doi.org/10.1021/ef7005707
  7. B. E. Mann, M. L. Tuner, R. Quyoum, N. Marsih, and P. M. Maitlis, Energy & Fuels, 6, 228 (1992).
  8. A. Abu-Jari, A. Tsolakis, K. Theinnoi, R. Cracknell, A. Megaritis, M. L. Wyszynski, and S. E. Golunski, Energy & Fuels, 20, 2377 (2006). https://doi.org/10.1021/ef060332a
  9. http://www.sasolchevron.com/
  10. Y. Lu and T. Lee, J. Natural Gas Chem., 16, 329 (2007). https://doi.org/10.1016/S1003-9953(08)60001-8
  11. E. S. Yim, K. Min, C. Jeon, D. Lee, J. R. Kim, S. S. Kim, E. J. Jang, C. K. Park, C. S. Jung, J. K. Kim, Y. K. Lim, and S. C. Shin, New & Renewable Energy, 3, 98 (2007).
  12. M. N. Varma and G. Madras, Ind. Eng. Chem. Res., 46, 1 (2007). https://doi.org/10.1021/ie0607043
  13. F. H. A. Bolder, Energy & Fuels, 21, 1396 (2007). https://doi.org/10.1021/ef060614a
  14. http://www.shell.com/home/content/shellgasandpower-en/
  15. Y. K. Lim, S. C. Shin, E. S. Yim, and H. O. Song, J. Korean Ind. Eng. Chem., 19, 137 (2008).
  16. J. Smit, M. V. S. Annaland, and J. A. M. Kuipers, Chem. Eng. Res. Design, 82, 245 (2004). https://doi.org/10.1205/026387604772992837
  17. K. Aasber-Peterson, T. S. Christensen, C. S. Nielsen, and I. Dybkjær, Fuel Proc. Tech., 83, 253 (2003). https://doi.org/10.1016/S0378-3820(03)00073-0
  18. T. Wu, Z. Huang, W. G. Zhang, J. H. Fang, and Q. Yin, Energy & Fuels, 21, 1908 (2007). https://doi.org/10.1021/ef0606512
  19. G. Jacobs, A. Sarkar, Y. Ji, M. Luo, A. Dozier, and B. H. Davis, Ind. Eng. Chem. Res., 47, 672 (2008). https://doi.org/10.1021/ie0709988
  20. K. C. Stein, G. P. Thompson, and R. B. Anderson, Ind. Eng. Chem., 49, 410 (1957). https://doi.org/10.1021/ie51392a036
  21. 석유제품의 품질기준과 검사방법 및 검사수수료에 관한 고시 (산업자원부 고시 제2006-42호, 2006. 4. 26).