R & D Trends on Direct Formic Acid Fuel Cells

직접 개미산 연료전지의 연구동향

  • Kwon, Yongchai (Department of Chemical and Environmental Technology, Inha Technical College) ;
  • Han, Jonghee (Fuel Cell Research Center, Korea Institute of Science and Technology) ;
  • Kim, Jinsoo (Department of Chemical Engineering, Green Energy Center, Kyung Hee University)
  • 권용재 (인하공업전문대학교 화공환경과) ;
  • 한종희 (한국과학기술연구원 연료전지센터) ;
  • 김진수 (경희대학교 화학공학과, 그린에너지센터)
  • Received : 2008.11.20
  • Published : 2008.12.10


Recently, as a demand for the portable device is surged, there are needs to develop a new fuel cell system for replacing the conventionally used secondary battery. For this purpose, it becomes important to develop direct formic acid fuel cell (DFAFC) that uses formic acid as a fuel. The formic acid can offer typical advantages such as excellent non-toxicity of the level to be used as food additive, smaller crossover flux through electrolyte, and high reaction capability caused by high theoretical electromotive force (EMF). With the typical merits of formic acid, the efforts for optimizing reaction catalyst and cell design are being made to enhance performance and long term stability of DFAFC. As a result, to date, the DFAFC having the power density of more than $300mW/cm^2$ was developed. In this paper, basic performing theory and configuration of DFAFC are initially introduced and future opportunities of DFAFC including the development of catalyst for the anode electrode and electrolyte, and design for the optimization of cell structure are discussed.


  1. J. Clavlier, R. Parsons, R. Durand, C. Lamy, and J. M Leger, J. Electroanal. Chem. Interfacial Electrochem., 124, 321 (1981). https://doi.org/10.1016/S0022-0728(81)80311-7
  2. C. Lamy and J. M. Leger, J. Chim. Phys. Phys.-Chem. Biol., 88, 1649 (1991). https://doi.org/10.1051/jcp/1991881649
  3. P. Waszczuk, T. M. Barnard, C. Rice, R. I. Masel, and A. Wieckowski, Electrochem. Comm., 4, 599 (2002). https://doi.org/10.1016/S1388-2481(02)00386-7
  4. C. Rice, S. Ha, R. I. Masel, P. Waszczuk, A. Wieckowski, and T. Barnard, J. Power Sources, 111, 83 (2002). https://doi.org/10.1016/S0378-7753(02)00271-9
  5. S. Ha, R. Larsen, Y. Zhu, and R. I. Masel, Fuel Cells, 4, 337 (2004). https://doi.org/10.1002/fuce.200400052
  6. Y. Zhu, S. Ha, and R. I. Masel, J. Power Sources, 130, 8 (2004). https://doi.org/10.1016/j.jpowsour.2003.11.051
  7. J. Yeom, G. Z. Mozsgai, B. R. Flachsbart, E. R. Choban, A. Asthana, M. A. Shannon, and P. J. A. Kenis, Sens. Actuators B: Chem., 107, 882 (2005). https://doi.org/10.1016/j.snb.2004.12.050
  8. M. Baldauf and D. M. Kolb, J. Phys. Chem., 100, 11375 (1996). https://doi.org/10.1021/jp952859m
  9. L. L. Zhang, T. H. Lu, J. C. Bao, Y. W. Tang, and C. Li, Electrochem. Commun., 8, 1625 (2006). https://doi.org/10.1016/j.elecom.2006.07.033
  10. M. Weber, J.-T. Wang, S. Wasmus, and R. F. Savilnell, J. Electrochem. Soc., 143, L158 (1996). https://doi.org/10.1149/1.1836961
  11. L. R. Alden, D. K. Han, F. Matsumoto, and H. D. Abruna, Chem. Mater., 18, 5591 (2006). https://doi.org/10.1021/cm060927j
  12. A. Capon and R. Parsons, J. Electroanal. Chem. Interfacial Electrochem., 45, 205 (1973). https://doi.org/10.1016/S0022-0728(73)80158-5
  13. A. H. Taylor, S. Kirkland, and S. B. Brummer, Trans. Faraday Soc., 67, 819 (1971). https://doi.org/10.1039/tf9716700819
  14. C. Rice, S. Ha, and R. I. Masel, J. Power Sources, 115, 229 (2003). https://doi.org/10.1016/S0378-7753(03)00026-0
  15. S. Ha, R. Larsen, and R. I. Masel, J. Power Sources, 144, 28 (2005). https://doi.org/10.1016/j.jpowsour.2004.12.031
  16. L. L. Zhang, Y. W. Tang, J. C. Bao, T. H. Lu, and C. Li, J. Power Sources, 162, 177 (2006). https://doi.org/10.1016/j.jpowsour.2006.07.005
  17. S. Ha, B. Adams, and R. I. Masel, J. Power Sources, 128, 119 (2004). https://doi.org/10.1016/j.jpowsour.2003.09.071
  18. S. Motoo and M. Watanabe, A. Capon, and R. Parsons, J. Electroanal. Chem. Interfacial Electrochem., 69, 429 (1976). https://doi.org/10.1016/S0022-0728(76)80145-3
  19. X. Xia and T. Iwasita, J. Electrochem. Soc., 140, 2559 (1993). https://doi.org/10.1149/1.2220862
  20. A. Capon and R. Parsons, J. Electroanal. Chem. Interfacial Electrochem., 44, 1 (1973). https://doi.org/10.1016/S0022-0728(73)80508-X
  21. R. Larsen, S. Ha, J. Zakzeski, and R. I. Masel, J. Power Sources, 157, 78 (2006). https://doi.org/10.1016/j.jpowsour.2005.07.066
  22. C. Song, M. Khanfar, and P. G. Pickup, J. Appl. Electrochem., 36, 339 (2006). https://doi.org/10.1007/s10800-005-9071-1
  23. S. B. Brummer, J. Phys. Chem., 69, 1365 (1965).
  24. A. V. Tripkovic, K. D. Popovic, R. M. Stevanovic, R. Socha, and A. Kowal, Electrochem. Commun., 8, 1492 (2006). https://doi.org/10.1016/j.elecom.2006.07.005
  25. K. J. Jeong, C. A. Miesse, J. H. Choi, J. Lee, J. Han, S. P. Yoon, S. W. Nam, T. H. Im, and S. A. Hong, J. Power Sources, 168, 119 (2007). https://doi.org/10.1016/j.jpowsour.2007.02.062
  26. E. Casado-Rivera, D. J. Volpe, L. Alden, C. Lind, C. Downie, C. Korzeniewski, F. J. DiSalvo, and H. D. Abruna, J. Am. Chem. Soc., 126, 4043 (2004). https://doi.org/10.1021/ja038497a
  27. J. D. Lovic, A. V. Tripkovic, S. L. J. Gojkovic, K. D. Popovic, D. C. Tripkovic, P. Olszewski, and A. Kowal, J. Electroanal. Chem., 581, 294 (2005). https://doi.org/10.1016/j.jelechem.2005.05.002
  28. M. Watanabe, H. Horiuchi, and S. Motoo, J. Electroanal. Chem. Interfacial Electrochem., 250, 117 (1988). https://doi.org/10.1016/0022-0728(88)80197-9
  29. Y. Zhu, Z. Kahn, and R. I. Masel, J. Power Sources, 139, 15 (2005). https://doi.org/10.1016/j.jpowsour.2004.06.054
  30. M. Tian and B. E. Conway, J. Electroanal. Chem., 581, 176 (2005). https://doi.org/10.1016/j.jelechem.2004.12.029
  31. M. Baldauf and D. M. Kolb, J. Phys. Chem., 100, 11375 (1996). https://doi.org/10.1021/jp952859m
  32. M. J. Llorca, J. M. Feliu, A. Aldaz, and J. Clavilier, J. Electroanal. Chem., 13, 6287 (1997).
  33. A. Capon and R. Parsons, J. Electroanal. Chem. Interfacial Electrochem., 44, 239 (1973). https://doi.org/10.1016/S0022-0728(73)80250-5
  34. W. S. Jung, J. H. Han, and S. Ha, J. Power Sources, 173, 53 (2007). https://doi.org/10.1016/j.jpowsour.2007.08.023
  35. H. A. Gasteiger, N. Markovic, R. Philip, and E. J. Cairns, Electrochim. Acta, 39, 1825 (1994). https://doi.org/10.1016/0013-4686(94)85171-9
  36. X. Wang, J. M. Hu, and I. M. Hsing, J. Electroanal. Chem., 562, 73 (2004). https://doi.org/10.1016/j.jelechem.2003.08.010
  37. F. L. Chen, M. H. Chang, and M. K. Lin, Electrochim. Acta, 52, 2506 (2007). https://doi.org/10.1016/j.electacta.2006.09.011
  38. A. Capon and R. Parsons, J. Electroanal. Chem. Interfacial Electrochem., 65, 285 (1975). https://doi.org/10.1016/S0022-0728(75)80074-X
  39. J. Yeom, R. S. Jayashree, C. Rastogi, M. A. Shannon, and P. J. A. Kenis, J. Power Sources, 160, 1058 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.066
  40. S. Ha, C. A. Rice, R. I. Masel, and A. Wieckowski, J. Power Sources, 112, 655 (2002). https://doi.org/10.1016/S0378-7753(02)00453-6
  41. J. H. Choi, K. J. Jeong, Y. Dong, J. H. Han, T. H. Im, J. S. Lee, and Y. E. Sung, J. Power Sources, 163, 71 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.072
  42. W. P. Zhou, A. Lewera, R. Larsen, R. I. Masel, and A. Wieckowski, J. Phys. Chem. B, 110, 13393 (2006). https://doi.org/10.1021/jp061690h
  43. S. Y. Uhm, S. T. Chung, and J. Y. Lee, Electrochem. Commun., 9, 2027 (2007). https://doi.org/10.1016/j.elecom.2007.05.029
  44. Y.-W. Rhee, S. Ha, and R. I. Masel, J. Power Sources, 117, 35 (2003). https://doi.org/10.1016/S0378-7753(03)00352-5
  45. X. Yu and P. G. Pickup, J. Power Sources, 182, 124 (2008). https://doi.org/10.1016/j.jpowsour.2008.03.075
  46. X. C. Zhou, W. Xing, C. P. Liu, and T. H. Lu, Electrochem. Commun., 9, 1469 (2007). https://doi.org/10.1016/j.elecom.2007.01.045
  47. E. Herrero, A. Fernandez-Vega, J. M. Feliu, and A. Aldez, J. Electroanal. Chem., 350, 73 (1993). https://doi.org/10.1016/0022-0728(93)80197-P