DOI QR코드

DOI QR Code

Expression of Alpha-Amylase Gene from Bacillus licheniformis in Lactobacillus brevis 2.14

  • Lee, Kang-Wook (Division of Applied Life Science (BK21 program), Graduate School, Gyeongsang National University) ;
  • Park, Ji-Yeong (Division of Applied Life Science (BK21 program), Graduate School, Gyeongsang National University) ;
  • Kim, Gyoung-Min (Division of Applied Life Science (BK21 program), Graduate School, Gyeongsang National University) ;
  • Kwon, Gun-Hee (Division of Applied Life Science (BK21 program), Graduate School, Gyeongsang National University) ;
  • Park, Jae-Yong (Division of Applied Life Science (BK21 program), Graduate School, Gyeongsang National University) ;
  • Lee, Mee-Ryung (Division of Applied Life Science (BK21 program), Graduate School, Gyeongsang National University) ;
  • Chun, Ji-Yeon (Department of Food Science and Technology, Sunchon National University) ;
  • Kim, Jeong-Hwan (Institute of Agriculture & Life Science, Gyeongsang National University)
  • Published : 2008.09.30

Abstract

The $\alpha$-amylase gene, amyL, from Bacillus licheniformis was expressed in Lactobacillus brevis 2.14 and Escherichia coli $DH5{\alpha}$ using two different shuttle vectors, pCW4 and pSJE. E. coli transformants (TFs) harboring either $pCW4T{\alpha}$ or $pSJET{\alpha}$ produced active $\alpha$-amylase but L. brevis TFs did not, as determined by enzyme assays and zymography. But amyL transcripts were synthesized in L. brevis TFs. In terms of plasmid stability, pSJE, a theta-type replicon, was more stable than pCW4, an RCR (rolling circle replication) plasmid, in L. brevis without antibiotic selection.

Keywords

gene expression;$\alpha$-amylase;Lactobacillus brevis;pCW4;pSJE

References

  1. Plengvidhya V, Breidt F Jr, Lu Z, Fleming HP. 2007. DNA fingerprinting of lactic acid bacteria in sauerkraut fermentations. Appl Environ Microbiol 73: 7697-7702 https://doi.org/10.1128/AEM.01342-07
  2. Lee KS, Shin YS, Lee CH. 1998. Acid tolerance of Lactobacillus brevis isolated from Kimchi. Kor J Food Sci Technol 30: 1399-1403
  3. Iijima K, Suzuki K, Ozaki K, Yamashita H. 2006. horC confers beer-spoilage ability on hop-sensitive Lactobacillus brevis ABBC$45^{cc}$. J Appl Microbiol 100: 1282-1288 https://doi.org/10.1111/j.1365-2672.2006.02869.x
  4. Jeong SJ, Park JY, Lee HJ, Kim JH. 2007. Characterization of pFMBL1, a small cryptic plasmid isolated from Leuconostoc mesenteroides SY2. Plasmid 57: 314-323 https://doi.org/10.1016/j.plasmid.2006.09.003
  5. Kim JH, Woo SH. 1995. Expression of Bacillus licheniformis $\alpha$-amylase gene in Lactobacillus casei strains. J Microbiol Biotechnol 5: 257-263 https://doi.org/10.1159/000107866
  6. Kim IC, Jang SY, Cha JH, Ko YH, Park KH, Rho HM. 1998. Cloning and expression of thermostable $\alpha$-amylase gene in Escherichia coli from Bacillus licheniformis ATCC 27811. Kor J Appl Microbiol Bioeng 16: 369-373
  7. Chang HC, Chung DK. 2004. Characterization of pC7 from Lactobacillus paraplantarum C7 derived from kimchi and development of lactic acid bacteria-Escherichia coli shuttle vector. Plasmid 52: 84-88 https://doi.org/10.1016/j.plasmid.2004.05.001
  8. Jeong SJ, Park JY, Kim JH, Kim GM, Chun J, Lee JH, Chung DK, Kim JH. 2006. Transformation of Leuconostoc mesenteroides SY1, a strain isolated from Kimchi. J Microbiol Biotechnol 16: 149-152
  9. Dower WJ, Miller JF, Ragsdale CW. 1988. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res 16: 6127-6145 https://doi.org/10.1093/nar/16.13.6127
  10. Berthier F, Zagorec M, Champomier-Verges M, Ehrlich SD, Morel-Devile F. 1996. Efficient transformation of Lactobacillus sake by electroporation. Microbiology (Reading) 142: 1273-1279 https://doi.org/10.1099/13500872-142-5-1273
  11. Bernfeld P. 1955. Amylases. In Methods in Enzymology. Academic Press, CA. Vol 1, p 149-151
  12. Kiewiet R, Seegers JF, Venema G, Bron S. 1993. The mode of replication is a major factor in segregational plasmid instability in Lactococcus lactis. Appl Environ Microbiol 48: 726-731
  13. Axelsson A, Holck A, Birkrland SE, Aukrust T, Blom H. 1993. Cloning and nucleotide sequence of a gene from Lactobacillus sake Lb706 necessary for sakacin A production and immunity. Appl Environ Microbiol 59: 2868-2875
  14. de Ruyters PG, Kuipers OP, De Vos WM. 1996. Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Appl Environ Microbiol 62: 3662-3667
  15. Lee CW, Ko CY, Ha DM. 1992. Microfloral changes of the lactic acid bacteria during Kimchi fermentation and identification of the isolates. Kor J Appl Microbiol Biotechnol 20: 102-109
  16. Liu S, Dien BS, Nichols NN, Bischoff KM, Hughes SR, Cotta MA. 2007. Coexpression of pyruvate decarboxylase and alcohol dehydrogenase genes in Lactobacillus brevis. FEMS Microbiol Lett 274: 291-297 https://doi.org/10.1111/j.1574-6968.2007.00849.x
  17. Park JY, Jeong SJ, Lee AR, Park JY, Jeong WJ, Kim JH. 2007. Expression of $\alpha$-galactosidase gene from Leuconostoc mesenteroides SY1 in Leuconostoc citreum. J Microbiol Biotechnol 17: 2081-2084
  18. O'Sullivan DJ, Klaenhammer TR. 1993. Rapid mini-prep isolation of high quality plasmid DNA from Lactococcus and Lactobacillus spp. Appl Environ Microbiol 59: 2730-2733
  19. Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0

Cited by

  1. Production of Cheonggukjang by Using a Recombinant Bacillus licheniformis Strain vol.14, pp.1, 2009, https://doi.org/10.3746/jfn.2009.14.1.090