Growth Response and Arsenic Uptake of White Clover (Trifolium repens) and Evening Primrose(Oenothera odorata) Colonized with Arbuscular Mycorrhizal Fungi in Arsenic-Contaminated Soil

  • Kim, Dae-Yeon (Division of Environmental Science and Ecological Engineering, College of Life and Environmental Sciences, Korea University) ;
  • Lee, Yun-Jeong (Organic Farming technology Division, National Institute of Agricultural Science and Technology) ;
  • Lee, Jong-Keun (Division of Environmental Science and Ecological Engineering, College of Life and Environmental Sciences, Korea University) ;
  • Koo, Na-Min (Division of Environmental Science and Ecological Engineering, College of Life and Environmental Sciences, Korea University) ;
  • Kim, Jeong-Gyu (Division of Environmental Science and Ecological Engineering, College of Life and Environmental Sciences, Korea University)
  • 발행 : 2008.03.31


A greenhouse experiment was conducted to investigate the role of the arbuscular mycorrhizal(AM) fungus, Glomus mosseae(BEG 107) in enhancing growth and arsenic(As) and phosphorus(P) uptake of white clover(Trifolium repens) and evening primrose(Oenothera odorata) in soil collected from a gold mine having concentrations of 381.6 mg total As $kg^{-1}$ and 20.5 mg available As $kg^{-1}$. Trifolium repens and O. odorata are widely distributed on abandoned metalliferous mines in Korea. The percent root colonization by the AM fungus was 55.9% and 62.3% in T. repens and O. odorata, respectively, whereas no root colonization was detected in control plants grown in a sterile medium. The shoot dry weight of T. repens and O. odorata was increased by 323 and 117% in the AM plants compared to non-mycorrhizal(NAM) plants, respectively. The root dry weight increased up to 24% in T. repens and 70% in O. odorata following AM colonization compared to control plants. Mycorrhizal colonization increased the accumulation of As in the root tissues of T. repens and O. odorata by 99.7 and 91.7% compared to the NAM plants, respectively. The total uptake of P following AM colonization increased by 50% in T. repens and 70% in O. odorata, whereas the P concentration was higher in NAM plants than in the AM plants. Colonization with AM fungi increased the As resistance of the host plants to As toxicity by augmenting the yield of dry matter and increasing the total P uptake. Hence, the application of an AM fungus can effectively improve the phytoremediation capability of T. repens and O. odorata in As-contaminated soil.


  1. Adrino, D.C. (2001) Trace elements in terrestrial environments, biogeochemistry, bioavailability, and risks of metals, 2nd ed. Springer p. 222
  2. Pearson, J.N. and Jakobsen, I. (1993) Symbiotic exchange of carbon and phosphorus between cucumber and three arbuscular mycorrhizal fungi. New Phytol. 124, 481-488
  3. Merharg, A.A. and Macnair, M.R. (1992) Suppression of the high-affinity phosphate-uptake system - a mechanism of arsenate tolerance in Holcus lanatus L. J. Exp. Bot. 43, 519-524
  4. Sharple, J.M., Meharg, A.A., Chambers, S.M., and Cairney, J.W.G. (2000) Mechanism of arsenate resistance in the ericoid mycorrhizal fungus Hymenoscyphus ericae. Plant Physiol. 124, 1327-1334
  5. Read, D.J. (1993) Mycorrhiza in plant communities. In: Advances in Plant Pathology 9: Mycorrhiza Synthesis. Tommerup IC(eds), Academic Press, San Diego
  6. Cunningham, S.D. and Ow, D.W. (1996) Promises and prospects of phytoremediation. Plant Physiol. 110, 715-719
  7. Tordoff, G.M., Baker, A.J.M., and Willis, A.J. (2000) Current approaches to the revegetation and reclamation of metalliferous mine wastes. Chemosphere 41, 219-228
  8. Alloway, B.J. (1994) Heavy metals in soils, In: O'Neill P. Arsenic. 2nd ed. Blackie Academic & Professional p. 106
  9. Park, Y.H. (1994) Management practices of inactive and abandoned metalliferous mine area in Korea. Korean Environment Technology & Research KETRI/1994/RE-14, 1-14
  10. Azcue, J.M., Mudroch, A., Rosa, F., and Hall, G.E.M. (1994) Effects of abandoned gold mine tailings on the arsenic concentrations in water and sediments of Jack of Clubs Lake, BC. Environ. Technol. 15, 669-678
  11. Leung, H.M., Ye, Z.H., and Wong, M.H. (2006) Interactions of mycorrhizal fungi with Pteris vittata (As hyperaccumulator) in As-contaminated soils. Environ. Pollut. 139, 1-8
  12. Lee, Y.J. and George, E. (2005) Contribution of mycorrhizal hyphae to the uptake of metal cations by cucumber plants at two levels of phosphorus supply. Plant Soil 278, 361-370
  13. Lee, Y.J. (2002) Contribution of arbuscular mycorrhizal fungi to metal cations uptake in vegetables. Ph.D Dissertation. Hohenheim University, Stuttgart, Germany
  14. Kim, J.G., Lim, S.K., Lee, S.H., Lee, C.H., and Jeong, C.Y. (1999) Evaluation of heavy metal pollution and plant survey around inactive and abandoned mining areas for phytoremediation of heavy metal contaminated soils. Kor. J. Environ. Agri. 18(1), 28-34
  15. Kim, D.Y., Kim, W.H., Lee, J.G., and Kim, J.G. (2005) Effects of soil texture and soil water contents on growth and physiological responses of Oenthera odorata Jacq. Korean Soc. Soil Sci. Fert. Proceeding, 12-13 May 2005, 38(1), p. 322
  16. Liu, Y., Zhu, Y.G., Chen, B.D., Christie, P., and Li, X.L. (2005) Yield and arsenate uptake of arbuscular mycorrhizal tomato colonized by Glomus mosseae BEG 167 in As spiked soil under glasshouse conditions. Environ. Int. 31, 867-873
  17. Fitz, W.W. and Wenzel, W.W. (2002) Arsenic transformations in the soil-rhizosphere-plant system: fundamentals and potential application to phytoremediation. J. Biotechnol. 99, 259-278
  18. Buwalda, J.G. and Goh, K.M. (1982) Host-fungus competition for carbon as a cause of growth depressions in vesicular-arbuscular mycorrhizal ryegrass. Soil Biol. Biochem. 14, 103-106
  19. Woolson, E.A., Axley, J.H., and Kearney, P.C. (1971) Correlation between available soil arsenic, estimated by six methods, and response of corn (Zea mays L.), Soil Sci. Soc. Amer. Pro. 35, 101-105
  20. Lindsay, W.L. and Norvell, W.L. (1978) Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 42, 421-428
  21. Koide, R. (1985) The nature of growth depressions in sunflower caused by vesicular-arbuscular mycorrhizal infection. New Phytol. 99, 449-462
  22. Sumner, M.E. and Miller, W.P. (1996) Cation exchange capacity and exchange coefficients. In: Sparks, DL. (Eds.), Method of soil analysis: Part III-Chemical methods. American Society of Agronomy, Madison, WI 1201-1229
  23. Nelson, D.W. and Sommers, L.E. (1996) Total carbon, organic carbon, and organic matter. In: Sparks, D.L. (Eds.), Method of soil analysis: Part III-Chemical methods. American Society of Agronomy, Madison, WI 961-1010
  24. Giovanneti, M. and Mosse, B. (1980) An evaluation of techniques for measuring vesicular arbuscular mycohhrhizal infection in roots. New Phytol. 84, 489-500
  25. Mremner, J.M. (1996) Nitrogen-Total. In: Sparks, DL. (Eds.), Method of Soil Analysis: Part IIIChemical Methods. American Society of Agronomy, Madison, WI 1085-1121
  26. George, E., Marschner, H., and Jakobsen, I. (1992) Water and nutrients translocation by hyphae of Glomus mosseae. Can. J. Bot. 70, 2130-2137
  27. Cao, X., Ma, L.Q., and Tu, C. (2004) Antioxidative responses to arsenic in the arsenic hyperaccumulator Chinese brake fern (Pteris vittata L.). Environ. Pollut. 128, 317-325
  28. Meharg, A.A., Naylor, J., and Macnair, M.R. (1994) Phosphorus nutrition of arsenate-tolerant and nontolerant phenotypes of velvetgrass. J. Environ. Qual. 23, 234-238
  29. McGrath, S.P. and Zhao, F.J. (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr. Opin. Biotech. 14, 277-282
  30. Wright, W., Fitter, A., and Meharg, A.A. (2000) Reproductive biomass in Holcus clones that differ in their phosphate uptake kinetics and mycorrhizal colonization. New Phytol. 146, 493-501
  31. Smith, S.E. and Read, D.J. (1997) Mycorrhizal symbiosis, 2nd ed. San Diego, CA, USA, Academic Press
  32. Leyval, C., Turnau, K., and Haselwandter, K. (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7, 139-153
  33. Sharple, J.M., Meharg, A.A., Chambers, S.M., and Cairney, J.W.G. (2000) Symbiotic solution to arsenic contamination. Nature 404: 951-952
  34. Davis, A., Ruby, M.V., Bloom, M., Schoof, R., Freeman, G., and Bergstorm, P.D. (1996) Mineralogic constraints on the bioavailability of arsenic in smelter-impacted soils. Environ. Sci. Technol. 30, 392-399
  35. Khan, A.G., Kuek, C., Chaudhry, T.M., Khoo, C.S., and Hayes, W.J. (2000) Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 41, 197-207
  36. Gonzalez-Chavez, C., Harris, P.J., Dodd, J., and Meharg, A.A. (2002) Arbuscular mycorrhizal fungi confer enhanced arsenate resistance on Holcus lantus. New Phytol. 155, 163-171
  37. Meharg, A.A. and Hartley-Whitaker, J. (2002) Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol. 154, 29-43
  38. Trotta, A., Falaschi, P., Cornara, L., Minganti, V., Fusconi, A., Drava, G., and Berta, G. (2006) Arbuscular mycorrhizae increase the arsenic translocation factor in the As hyperaccumulating fern Pteris vittata L. Chemosphere 65, 74-81
  39. Lee, Y.N. (1996) Flora of Korea. Kyo-Hak Publishing Co., Ltd. p. 412
  40. Cai, Y., Georgiadis, M., and Fourqurean, J.W. (2000) Determination of arsenic in seagrass using inductively coupled plasma mass spectrometry. Spectrochim. Acta Part B 55, 1411-1422
  41. Kitson, R.E. and Mellon, M,G. (1944) Colorimetric determination of phosphorus as molybdivanadophosphoric acid. Ind. Eng. Chem. 16, 379-383
  42. Koske, R.E. and Gemma, J.N. (1989) A modified procedure for staining roots to detect VA mycorrhizas. Mycol. Res. 92, 486-505
  43. Chen, B.D., Zhu, Y.G., and Smith, F.A. (2006) Effects of arbuscular mycorrhizal inoculation on uranium and arsenic accumulation by Chinese brake fern (Pteris vittata L.) from a uranium mining-impacted soil. Chemosphere 62, 1464-1473
  44. Johnson, N.C., Graham, J.H., and Smith, F.A. (1997) Functioning of mycorrhizal associations along mutualism-parasitism continuum. New Phytol. 135(4), 575-586

피인용 문헌

  1. Current research trends for heavy metals of agricultural soils and crop uptake in Korea vol.31, pp.1, 2012,
  2. Soil-to-plant transfer of arsenic and phosphorus along a contamination gradient in the mining-impacted Ogosta River floodplain vol.572, 2016,