DOI QR코드

DOI QR Code

자연정화공법에 의한 인공습지 하수처리장에서 하수처리 공정개선에 따른 질소 및 인의 처리효율 향상 방안

A Study on the Improvement of Treatment Efficiency for Nitrogen and Phosphorus by Improved Sewage Treatment Process in Constructed Wetland by Natural Purification Method

  • 서동철 (루이지애나주립대학교 습지생물지구화학연구소) ;
  • 박우영 (경상대학교 응용생명과학부) ;
  • 임종서 (경상대학교 응용생명과학부) ;
  • 박찬훈 (경상대학교 응용생명과학부) ;
  • 이홍재 (진주산업대학교 환경공학과) ;
  • 김홍출 (진주산업대학교 미생물공학과) ;
  • 이상원 (진주산업대학교 미생물공학과) ;
  • 이도진 (순천대학교 농업교육과) ;
  • 조주식 (순천대학교 생명환경과학부) ;
  • 허종수 (경상대학교 응용생명과학부)
  • Seo, Dong-Cheol (Wetland Biogeochemistry Institute, Louisiana State University) ;
  • Park, Woo-Young (Division of Applied Life Science, Gyeongsang National University) ;
  • Lim, Jong-Sir (Division of Applied Life Science, Gyeongsang National University) ;
  • Park, Chan-Hoon (Division of Applied Life Science, Gyeongsang National University) ;
  • Lee, Hong-Jae (Department of Environmental Engineering, Jinju National University) ;
  • Kim, Hong-Chul (Department of Microbiological Engineering, Jinju National University) ;
  • Lee, Sang-Won (Department of Microbiological Engineering, Jinju National University) ;
  • Lee, Do-Jin (Department of Agricultural Education, Sunchon National University) ;
  • Cho, Ju-Sik (Division of Applied Life and Environmental Sciences, Sunchon National University) ;
  • Heo, Jong-Soo (Division of Applied Life Science, Gyeongsang National University)
  • 발행 : 2008.03.31

초록

농어촌 등에서 소규모로 발생하는 하수를 자연정화공법 의한 인공습지에서 효과적으로 처리하기 위하여 소형 하수처리장치를 호기성조 및 혐기성조로 구분하여 시공한 다음, 최적 하수 부하량을 조사하기 위해 하수 부하량별 오염물질의 처리효율을 조사한 결과 호기-혐기 조합형 소형 하수처리장에서 전반적으로 하수 부하량이 증가함에 따라 오염물질의 처리효율이 점점 감소하는 경향으로 특히 하수부하량 300 $Lm^{-2}day^{-1}$ 이상에서 수처리효율의 감소폭이 약간 컸다. 따라서 본 소형 하수처리장에서 BOD, $COD_{Mn}$, 탁도, T-N 및 T-P를 안정적으로 처리하기 위한 최적 부하량은 300 $Lm^{-2}day^{-1}$ 이었고, 이 때의 방류수 중 BOD, $COD_{Mn}$, 탁도, T-N 및 T-P의 처리효율은 각각 99, 94, 99, 49 및 89%로 현행 방류수 수질기준을 만족하면서 안정적으로 처리되었다. 하지만 본 소형 하수처리장에서 방류수 중의 T-N 및 T-P 함량은 각각 $28.5{\sim}29.4$$0.9{\sim}2.1mgL^{-1}$ 정도로서 앞으로 질소와 인의 방류수 수질기준이 각각 20 및 2 $mgL^{-1}$로 강화됨에 따라 보다 안정적인 수처리를 위해서는 T-N 및 T-P 처리효율을 향상시켜야 할 것으로 판단된다. 이에 최적 하수 부하량하에서 질소와 인의 강화될 방류수 수질기준(질소 20 $mgL^{-1}$ 및 인 2 $mgL^{-1}$)을 만족시키면서 안정적인 하수처리를 위한 최적의 수처리 공정개선 방안을 조사하였다. 호기-혐기 조합형 소형 하수처리장에서 수처리 공정개선 중 질소 및 인의 처리효율 향상이 가능한 방안은 혐기성조의 깊이 및 여재 입경 변경과 여재에 굴패각을 혼합한 방법이었다. 혐기성조의 깊이 및 여재 입경 변경 조건 중 혐기성조 1.5 m 깊이에서 여재 A(유효입경 1.50 mm)를 사용한 경우 T-N 및 T-P의 처리효율을 각각 10 및 3% 향상시켰고, 여재에 굴패각 혼합한 경우 T-N 및 T-P의 처리효율을 각각 14 및 7% 향상시켰다. 또한 동일한 조의 체적하에서 혐기성조의 깊이를1.5 m로 깊게한 것은 혐기성조 깊이 1 m에 비해 부지면적을 약 33% 정도 감소시킬 수 있을 것으로 판단되며, 또한 굴패각을 사용한 것은 폐기물의 재활용면에서도 매우 효과적인 방안으로 사용될 수 있을 것으로 판단된다.

참고문헌

  1. Kwun, S. K. and Yoon, C. G. (1999) Performance for a small on-site wastewater treatment system using the absorbent biofilter in rural areas. Kor. J. Environ. Agric. 18(4), 310-315
  2. Laber, J., Haberl, R. and Shresthsa, R. (1999) Two-stage constructed wetlands for treatment hospital wastewater in Nepal. Wet. Sci. Tech., 40(3), 317 -324 https://doi.org/10.1016/S0273-1223(99)00447-3
  3. Ministry of Enviroment (2000) White paper on the environment. Ministry of Environment Republic, Seoul (in Korea)
  4. Seo, D. C. (2002) Development of Sewage Treatment Apparatus by Natural Purification Method. Master Thesis. Gyeongsang National University of Education, Korea
  5. Lim, S. C. (2003) Efficiency of sewage treatment by improvement of water treatment system in environmentally friendly constructed wetland. Master Thesis, Gyeongsang National University of Education, Korea
  6. Seo, D. C., Lee, H. J., Cho, J. S., Park, H. G., Kim, H. K. and Heo, J. S. (2003) Selection of optimum pebbles size in sewage treatment plant by natural purification method. Kor. J. Environ. Agric. 26(1), 26-35
  7. Ministry of Environment (2000) The standard method of water analysis. Ministry of Environment Republic, Seoul (in Korea)
  8. APHA, AWWA, WCF. (1995) Standard methods for the examination of water and wastewater, 17th Edition. American Public Health Association, Washington, DC
  9. Ministry of Environment (2002) White paper on the environment. Ministry of Environment Republic, Seoul (in Korea)
  10. Huang, J., Reneau, Jr. R. B. and Hagedorn, C. (2000) Nitrogen removal in constructed wetlands employed to treat domestic wastewater. Wat. Res. 34(9), 2582-2588 https://doi.org/10.1016/S0043-1354(00)00018-X
  11. Lee, Y. D. and Kim, H. H. (1999) A study on the advanced treatment of wastewater by plants. Journal of the Environmental Sciences 8(1), 75-81
  12. Yoon, C. G., Kwun, S. K. and Kwan, T. Y. (1998) Feasibity study of constructed wetland for the wastewater treatment in rural area. J. KSAE. 40(3), 83-93
  13. Oh, B. K. (1999) A study of the nitrification and denitrification process on the sewage disposal water plants and pebbles. Master Thesis. Korea National University of Education, Korea
  14. Seo, D. C., Cho, J. S., Lee, H. J. and Heo, J. S., (2005) Phosphorus retention capacity of filter media for estimating the longevity of constructed wetland. Wat. Res. 39, 2445-2457 https://doi.org/10.1016/j.watres.2005.04.032
  15. Ferguson, J. F. and King, T. (1977) A model for aluminum phosphate precipitation. J. Water control Pollt. Fed., 49(4), 646-658

피인용 문헌

  1. Selection of Optimum Filter Media in Small-Scale Livestock Wastewater Treatment Apparatus by Natural Purification Method vol.44, pp.2, 2011, https://doi.org/10.7745/KJSSF.2011.44.2.285
  2. Evaluation of Removal Efficiency of Pollutants in Constructed Wetlands for Treating Greenhouse Wastewater Under Different Filter Media, Configuration Methods and Agricultural Water Loading. vol.47, pp.1, 2014, https://doi.org/10.11614/KSL.2014.47.1.013
  3. Treatment of Pollutants in Free Water Surface Constructed Wetlands with Lotus (Nelumbo nucifera) Cultivation Pond vol.53, pp.4, 2010, https://doi.org/10.3839/jabc.2010.041
  4. Evaluation of Wastewater Treatment Efficiency in Dongbokcheon Constructed Wetlands for Treating Non-point Source Pollution at Different Treatment Time and Wastewater Loading vol.44, pp.5, 2011, https://doi.org/10.7745/KJSSF.2011.44.5.929
  5. Evaluation of Treatment Efficiencies of Pollutants in Boknae Bio-Park Constructed Wetlands vol.44, pp.2, 2011, https://doi.org/10.7745/KJSSF.2011.44.2.263
  6. Evaluation of Aquatic Ecological Characteristics in Sinpyongcheon Constructed Wetlands for Treating Non-point Source Pollution vol.44, pp.3, 2011, https://doi.org/10.7745/KJSSF.2011.44.3.400
  7. Assessment of Water Purification Capacity of Vegetation Mats for the Reduction of Nonpoint-Source Pollution Loads vol.3, pp.1, 2016, https://doi.org/10.17820/eri.2016.3.1.070