Study on Combustion Characteristics of H2/CO Synthetic Gas

H2/CO 합성가스의 연소 특성에 관한 연구

  • Published : 2008.06.30


Numerical study is conducted to predict effects of radiative heat loss and fuel composition in synthetic gas diffusion flame diluted with $CO_2$. The existing reaction models in synthetic gas flames diluted with $CO_2$ are evaluated. Numerical simulations with and without gas radiation, based on an optical thin model, are also performed to concrete impacts on effects of radiative heat loss in flame characteristics. Importantly contributing reaction steps to heat release rate are compared for synthetic gas flames with and without $CO_2$ dilution. It is also addressed that the composition of synthetic gas mixtures and their radiative heat losses through the addition of $CO_2$ modify the reaction pathways of oxidation diluted with $CO_2$.ጀ䍆䭏㈰〲ㄱ㤲㈱㈷㌴㊀쀁x済Ĉ㠤⠀ጀ䩁䭏㈰〸〸㌴㤶㐷㜶㎀쀃x済ଋᴇ⠀ጀ䩁䭏㈰〲ㄱ㤲〹㠸㐴㊀쀂x済ᜌἩ⠀ጀ䩁䭏㈰〷㈴〶㜱ㄹㄵ㞀쀄x済ᘔ᠇⠀ጀ䩁䭏㈰〱ㄱ㤲ㄵ㠶㤹ㆀ쀁x済Ĉ㰨⠀ጀ䍆䭏㈰〰ㄱ㤲㈱㌵㔰㊀쀁x済ĉȡ⠀ἀऀ㘲ㄮ㌸ጀ䩁䭏ㄹ㤹ㄱ㤲〲㌹㔴㒀쀄x済ᔖⰏ⠀ጀ䩁䭏ㄹ㤶ㄱ㤲〲㌵〲㎀쀃x済᠇⤴⠀ጀ䩁䭏㈰〴ㄱ㤲㌰㐶㔴㊀쀃x済ᴓ⠞⠀ጀ䍆䭏㈰〶ㄶ㐱㤴㐲㜳㚀쀁x済ĉሧ⠀ጀ䍆䭏㈰〳ㄱ㤲㈱㌷㔱㢀쀁x済ĉᔥఀᢝ㊗⨀遹?⨀ヨ⨀‣㒗⨀恂⒗⨀炖ޗ⨀䢏抗⨀ꢝ㊗⨀債⒗⨀㢖ޗ⨀㡎䚗⨀ᶗ⨀䀹஗⨀낃Η⨀ꣅ⢗⨀җ⨀頲⮗⨀⠀ጀ䍆䭏㈰〶ㄶ㐱㤴㐲㘸㢀쀁x済ĉᔭ⠀ጀ䩁䭏㈰〸〶㤴㈴㜰㘹㊀쀈x済Ἀ⬫਀䣌傗⨀梅?⨀梱㪗⨀䢠㞗⨀䂑ʗ⨀ʗ⨀林⨀ꢗ㆗⨀쀤㦗⨀?傗⨀ꣽ㺗⨀?侗⨀僺䶗⨀逸ᮗ⨀㠸ʗ⨀ꂀ亗⨀飲䪗⨀⠀ጀ䩁䭏㈰〷㈴㜳㜵㘲㘲㞀쀈x済ἐ㬫⠀ጀ䍆䭏㈰〳ㄱ㤲㈱㌷㔹㚀쀁x済ĉᨛ⠀ጀ䩁䭏㈰〶〶ㄴ〷㈴㌸㢀쀂x済ܒ㬬⠀ጀ䩁䭏㈰〴ㄱ㤲㈹㜰㤳㒀쀂x済Ўท⠀ጀ䩁䭏㈰〴ㄱ㤲㈰㘴㤴㖀쀁x済ĉᴩ⠀ጀ䩁䭏㈰〴〳〴㌰㐷㔹㊀쀂x済ᄓب⠀ጀ䍆䭏㈰〳ㄱ㤲㈷〱ㄱ㞀쀂x済ĉ㔥⠀ጀ䍆䭏㈰〳ㄱ㤲㈱㌷㤴㒀쀁x済ĉḴ⠀ጀ䩁䭏㈰〸㌳㌳㠳㘰㈶む쀃x済ἓᨷ⠀ጀ䩁䭏㈰〱ㄱ㤲ㄱ〸ㄴ㖀쀁x済ĉ἟⠀ጀ䩁䭏㈰〲ㄱ㤲ㄸ㘶㜶ㆀ쀆x済


$CO_2$ dilution;Heat release rate;Oxidation reaction pathway;Radiative heat loss;Synthetic gas


  1. Song X., Guo Z., 2005, A new process for synthesis gas by co-gasifying coal and natural gas. Fuel., 84, 525-31
  2. Zhao D., Yamashita H., Kitagawa K., Arai N., Furuhata T., 2002, Behaviour and effect on NOx formation of OH radical in methane-air diffusion flame with steam addition, Combust. Flame., 130, 352-360
  3. Park J., Keel S. I., Yun J. H., Kim T. K., 2007, Effects of addition of electrolysis in methane-air diffusion flame, Int. J. Hydrogen. Energy., 32, 4059-70
  4. Zsély I. G., Zádor J., Turányi T., 2005, Uncertainty analysis of updated hydrogen and carbon monoxide oxidation mechanisms, Proc Combust Inst., 30, 1273-81
  5. Sun H., Yang S. I., Jomaas G., Law C. K., 2007, High-pressure laminar flame speeds and kinetic modeling of carbon monoxide/hydrogen combustion, Proc Combust Inst., 31, 439-46
  6. Natarajan J., Lieuwen T., Seitzman J., 2007, Laminar flame speeds of $H_{2}$/CO mixtures: effects of CO$_{2}$ dilution, preheat temperature, and pressure, Combust Flame., 151, 104-9
  7. Davis S. G., Joshi A. V., Wang H., Egolfopoulos F., 2005, An optimized kinetic model of H$_{2}$/CO combustion, Proc Combust Inst., 30, 1283-92
  8. Brown M. J., Mclean I. C., Smith D. B., Taylor S. C., 1996, Markstein lengths of CO/$H_{2}$/air flames, using expanding spherical flames, Proc Combust Inst., 26, 875-81
  9. Vagelopoupos C. M., Egolfopoulos F. N., 1994, Laminar flame speeds and extinction strain rates of mixtures of carbon monoxide with hydrogen, methane and air, Proc Combust Inst., 25, 1317-23
  10. Mclean I. C., Smith D. B., Taylor S. C., 1994, The use of carbon monoxide/hydrogen burning velocities to examine the rate of the CO+OH reaction, Proc Combust Inst., 25, 749-57
  11. Kee R. J., Dixon-Lewis G., Warnatz J., Coltrin M. E., Miller J. A., 1994, A fortran computer code package for the evaluation of gas-phase multi-component transport., Sandia National Laboratories Report., SAND 86-8246
  12. Konnov A. A., Drakov I. V., Ruyck J. D., 2002, Nirtic oxide formation in premixed flames of H2+ CO+CO2 and air, Proc. Combust. Inst, 29, 2171-77
  13. Kee R. J., Rupley F. M., Miller J. A., 1989, Chemkin II: a fortran chemical kinetics package for analysis of gas phase chemical kinetics, Sandia National Laboratories Report., SAND 89-8009B
  14. Park J., Park J. S., Kim H. P., Kim J. S., Kim S., Cho H. C., Cho K. W., Park H. S., 2007, NO emission behavior in oxy-fuel combustion recirculated with carbon dioxide, Energy Fuels., 21, 121-9
  15. Kee R. J., Miller J. A., Evans G. H., Dixon-Lewis G., 1988, A computational model of the structure and extinction of strained, opposed flow, premixed methane-are flame, Proc. Combust. Inst., 22, 1479-94
  16. Lutz A. E., Kee R. J., Grcar J. F., Rupley F. M., 1997, A fortran program for computing opposed-flow diffusion flames, Sandia National Laboratories Report., SAND 96-8243
  17. Ren J-Y., Qin W., Egolopoulos F. N., Tsotsis T. T., 2001, Methane reforming and its potential effect on the efficiency and pollutat emissions of lean methane-air combustion, Chem. Eng. Sci., 56, 1541-9
  18. Park J., Park J. S., Kim J. S., Kim S. C., Kim T. K., 2005, A study on H2-Air counterflow Flames in highly preheated air diluted with CO$_{2}$, Energy Fuel., 19, 2254-2260
  20. Fotache C. G., Tan Y., Sung C. J., Law C. K., 2000, Ignition of CO/$H_{2}$/$N_{2}$ versus heated air in counterflow: experimental and modeling results, Combust Flame., 120, 417-26
  21. Ju Y., Guo H., Maruta K., Liu F., 1997, On the extinction limit and flammabiliy limit non-adiabatic stretched methane-air premixed flames, J. Fluid Mech., 342, 315-34
  22. Chellian H. K., Law C. K., Ueda T., Smooke M. D., Williams F. A., 1990, An experimental and theoretical investigation of the dilution, pressure and flow-field effects on the extinction condition of methane-airnitrogen diffusion flames, Proc. Combust. Inst., 23, 503-511

Cited by

  1. A Study on the Lifted Flame Structure with Strain Rates in Premixed Impinging Jet Flames of Syngas (H2/CO) vol.26, pp.4, 2015,