• Published : 2008.06.30


Based on a composition of 99.4 wt% AISI 316L stainless steel, 0.3wt% Ti and 0.3 wt% $Y_2O_3$, an austenitic ODS steel was fabricated by a process of mechanical alloying, hot isostatic pressing and rolling. Fine oxide particles were observed in the matrix, and their chemical formulations were determined to be $Y_2Si_2O_7$ and TiO. Heat treatment of the cold-rolled sample at $1200^{\circ}C$ induced an isotropic tensile behavior at room temperature and at $700^{\circ}C$. This result would be mainly attributed to the equiaxed grains that form as a result of the heat treatment for recrystallization.


  1. R.L. Klueh, and A.T. Lelson, 'Ferritic/Martensitic Steels for Next-Generation Reactors', J. Nucl. Mater., 371, 37 (2007)
  2. T. Yoshitake, Y. Abe, N. Akasaka, S. Ohtsuka, S. Ukai, and A. Kimura, 'Ring-Tensile Properties of Irradiated Oxide Dispersion Strengthened Ferritic/Martensitic Steel Claddings', J. Nucl. Mater., 329-333, 342 (2004)
  3. S. Ohtsuka, S. Ukai, and M. Fujiwara, 'Nano-Mesoscopic Structural Control in 9Cr ODS Ferritic/Martensitic Steels', J. Nucl. Mater., 351, 241 (2006)
  4. H.Y. Kim, O.Y. Kwon, J. Jang, and S.H. Hong, 'Modification of Anisotropic Mechanical Properties in Recrystallized Oxide Dispersion Strengthened Ferritic Alloy', Scripta Mater., 54, 1703 (2006)
  5. N. Akasaka, S. Yamashita, T. Yoshitake, S. Ukai, A. Kimura, 'Microstructural Changes of Neutron Irradiated ODS Ferritic and Martensitic Steels', J. Nucl. Mater., 329-333, 1053 (2004)
  6. S. Uki, S. Mizuta, M. Fujiwara, T. Yoshitake, T. Okuda, M. Fujiwara, S. Hagi, and T. Kobayashi, J. Nucl. Sci. Technol., 283-287, 702 (2000)
  7. S. Uki, S. Mizuta, M. Fujiwara, T. Okuda, and T. Kobayashi, 'Development of 9Cr-ODS Martensitic Steel Claddings for Fuel Pins by means of Ferritic to Austenitic Rphase Transformation', J. Nucl. Sci. Technol., 39, 778 (2002)
  8. S. Yamashita, N. Akasaka, and S. Ohnuki, 'Nano-Oxide Particles Stability of 9-12Cr Grain Morphology Modified ODS Steels under Neutron Irradiation', J. Nucl. Mater., 329-333, 377 (2004)
  9. H. Sakasegawa, S. Ohtsuka, S. Ukai, H. Tanigawa, M. Jujiwara, H. Ogiwara, and A. Kohyama, 'Particle Size Effects in Mechanically Alloyed 9Cr ODS Steel Powder', J. Nucl. Mater., 367-370, 185 (2007)
  10. O. Fabrichnaya, H. J. Seifert, R. Weiland, T. Ludwig, F. Aldinger, and A. Navrotsky, 'Phase Equilibria and Thermodynamics in the $Y_2O_3-Al_2O_3-SiO2_2$ System', Z. Metallkd., 92, 1083 (2001)
  11. David R. Lide, CRC Handbook of Chemistry and Physics, 72nd ed., CRC Press, Inc., Boca Raton, Ann Arbor, Boston (1991-1992)
  12. A. Alamo, V. Lambard, X. Averty, and M.H. Mathon, 'Assessment of ODS-14%Cr Ferritic Alloy for High Temperature Applications', J. Nucl. Mater., 329-333, 333 (2004)
  13. S. Ukai, and M. Fujiwara, 'Perspective of ODS Alloys Application in Nuclear Environments', J. Nucl. Mater., 307- 311, 749 (2002)
  14. S. Ukai, T. Nishida, T. Okuda, and T. Yoshitake, 'R&D of Oxide Dispersion Strengthened Ferritic Martensitic Steels for FBR', J. Nucl. Mater., 258-263, 1745 (1998)

Cited by

  1. Incorporation of Y2O3 Particles into 410L Stainless Steel by a Powder Metallurgy Route vol.23, pp.6, 2014,
  2. Development of nano-oxide dispersed 304L steels by mechanical milling and conventional sintering vol.19, pp.1, 2016,
  3. Method of Solid-Phase Welding of Austenitic and Oxide-Dispersion-Strengthened Steels vol.53, pp.2, 2017,
  4. Microstructure and Mechanical Properties of Hot-Pressed 21-4N Oxide-Dispersion-Strengthened Austenitic Stainless Steels vol.7, pp.5, 2018,