LPS로 자극된 macrophage RAW264.7 세포에서 ascochlorin에 대한 단백질체 분석
장영채*

대구가톨릭대학교 의용생체공학연구소, 대구가톨릭대학교 의과대학 발병학교실

Received March 24, 2008 / Accepted April 12, 2008

Proteome Analysis of Responses to Ascochlorin in LPS-induced Mouse Macrophage RAW264.7 Cells by 2-D Gel Electrophoresis and MALDI-TOF MS. Young-Chae Chang*, Research Institute of Biomedical Engineering and Department of Pathology, Catholic University of Daegu School of Medicine, Daegu, 705-034, Korea - Ascochlorin (ASC) is prenyl-phenol compound that was isolated from the fungus Ascochyta vieiae. ASC reduces serum cholesterol and triglyceride levels, and suppresses hypertension, tumor development, ameliorates type I and II diabetes. Here, to better understand the mechanisms by which ASC regulates physiological or pathological events and induces responses in the pharmacological treatment of inflammation, we performed differential analysis of the proteome of the mouse macrophage RAW264.7 cells in response to ASC. In this study, we used a proteomic analysis of LPS-induced RAW264.7 cells treated by ASC, to identify proteins potentially involved in inflammatory processes. The RAW264.7 cell proteomes with and without treatment with ASC were compared using two-dimensional electrophoresis (2-D SDS-PAGE), matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF-MS) and bioinformatics. The largest differences in expression were observed for the calreticulin (4-fold decrease), β-actin (4-fold decrease) and vimentin (1.5-fold decrease). In addition, rhaptin was increased 3-fold in RAW264.7 cells treated with ASC. The expression of some selected proteins was confirmed by RT-PCR analysis.

Key words : Ascochlorin (ASC), lipopolysaccharide (LPS), macrophage RAW264.7 cells, two-dimensional electrophoresis (2-D SDS-PAGE), matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF-MS)

서 론

염증(inflammation)은 조직의 변성, 순환 장애와 삼출 그리 고 조직의 증식 등의 증상을 유발하는 복잡한 병변이다. 염증 은 여러 경로의 감염(infection) 및 생체 내 대사산물 중 자극 성 물질에 대한 생체 내 방어적 반응을 가리키며[29]. 모든 질 환이 진행하는 과정 중 반복적 수반될 뿐만 아니라 이러한 염증이 위험할 때 세포 사멸이 초래된다[15]. 염증은 다양 한 세포들과 사이토카인(cytokine)들이 관여하는 일련의 과정 이며[52], 지질다당류(lipopolysaccharide, LPS)와 같은 외부 자극원 또는 아라키돈산(arachidonic acid) 대사체와 같은 내부 자극원들을 주요 매개로하여 대식세포(macrophage), 파이로세 포(granulocyte)와 같은 면역세포들로 염증 반응을 유발하여 촉발되는 것을 주요 특징으로 한다. 특히, 대식세포는 세균감 염에 대한 수증의 미생물면역반응에 중요한 역할을 하는 세포로서 LPS와 같은 자극물질에 노출되면 세포의 활성이 유 도하는 기능을 갖고 있다[1].

이에 본 연구에서는 염증 반응에서 프레닐 페놀계(prenyl-phenol compound) 화합물이 어떠한 영향을 미치는지 저를 조사하고자 프로토믹스(proteomics, 단백질체학) 연구를 수행하였다. 프레닐 페놀계 화합물인 ascochlorin (ASC, Fig. 1)은 균류(fungus)인 Ascochyta vieiae로부터 분리된 생리 활성 물질로 항바이러스, 항암 및 항균 활성을 나타낸다[19]. 다른 문헌 보고에 의하면 ASC 및 ASC 유도제들은 면역반응 조절, 각질 강화 그리고 혈압 감소에 효과를 나타내다고 알려져 있 다[7,16]. 또한 ASC 및 ASC 유도제는 제 1형 및 제 2형 당뇨병 의 경도를 호전시키며, 신장암(Caki-1)세포와 콜 유동 (U2OS) 세포에서 API-1의 전사 활성 억제를 동반한 MTT[9] 발현을 저해하여 암전에 억제 효과를 가지고 있음을 보고되었다[16]. 또한 ASC 및 ASC의 다양한 유도제에 대한 또 다른 생체학적 기전 연구 결과, peroxisome proliferator-activator receptor-γ (PPAR-γ)를 비롯한 악 대사자의 활성화[4,43,47] 및 비토르드라에서 분리된 유비쿼터(inubiquine) 의존적 전기수 승을 방해하여 산화적 인산화를 저해하는 기능이 밝혀졌다 [25,44,47,48]. 특히 최근 인간 콜 유동세포에 ASC를 처리한 후 단백질 발현 변화를 프로토믹스로 관찰한 결과 ASC가 epidermal growth factor receptor (EGFR)의 발현을 감소시키는 연구는 보고되었다[19].

본 연구의 주요 실험 방법은 프로토믹스는 O’Farrell [33]에 의해 처음 개발된 방법으로 단백질합물을 동전압 (isoelectric point)과 분자량(molecular weight)에 따라 분리
하하여 단백질을 얻기 그리고 철적으로 동시에 분석하는 기술이다. 프로테오믹스는 유전자 정보로부터 만들어진 프로테오매 (proteome, 단백질체)를 대상으로 유전자 기능 및 단백질의 기능 이상과 구조변화 유무 등을 규명하여 질병 과정 등을 추적하는 기술이다. 유전자 (gene)와 옴 (ome; 전체)의 합성어인 제놈 (genome)과 옴의 합성어인 프로테오매는 특정 세포나 특정 상태에서 생성되는 단백질 집합체이다. 최근에는 고해상도 이차원 플라츠크립타이어트 젤 전기영동법 (high resolution 2D-PAGE)과 같은 새로운 방법을 이용하여 단백질을 더욱 정밀하게 규명하고 있다[11,23]. 특히, 유전자 수준이 아닌 실제 기능을 갖는 단백질의 발현 변화를 정량 분석법 (mass spectrometry) 기술과 결합하여 비교적 쉽고 빠르게 많은 시료를 분석할 수 있어, 다양한 질병의 생물질 표(biomarker) 개발에 이용하는 등 그 활용 범위가 점차 확대되고 있다. 또한 최근에는 양질산울을 갖는 약물에 대한 세포 내 표적 유전자를 찾기 위해 프로테오믹스를 사용하고 있는 것으로 알려져 있다[8,19].

따라서 본 연구는 LPS 처리에 의해 활성화된 mouse macrophage RAW264.7 세포에서 ASC를 처리한 후 이차원 전기영동법을 이용하여, 단백질의 발현 변화 및 양상을 규명하고 단백질의 분석을 목적으로 하였다.

재료 및 방법

재료 및 시약

실험에 사용한 lipopolysaccharide (LPS), dimethyl sulfone oxide (DMSO) 그리고 3-4,5-dimethylthiazole-2-yl-2,5-di-phenyltetra-zolium bro-mide (MTT assay reagent)는 Sigma Chemical Co. (MO, USA)로부터 구입하여 사용하였다. Urea, CHAPS, DTT, Phamalyte (pH 3-10) 및 IUP DryStrips (pH 3-10, pH 4-7)는 Amersham Pharmacia Biotech (NJ, USA)로부터 구입하여 사용하였다. Cooomassie Brilliant Blue R-250와 Bradford protein assay reagent는 Bio-Rad Laboratory Inc. (Hercules, USA)로부터 구입하여 사용하였다.

세포 배양

Mouse macrophage RAW264.7 세포는 American type culture collection (MD, USA)로부터 구입하여 사용하였으나, RAW264.7 세포의 10% 혈청 (fetal bovine serum, FBS)과 1% 항생제를 함유한 DMEM (dulbecco’s modified Eagle’s medium)-high glucose 배양에서 37°C, 5% CO2 조건 하에 배양하였으며 2~3일 간격으로 세대 배양하여 실험에 사용하였다. 실험에 사용한 혈청, 항생제 그리고 DMEM-high glucose 배지는 모두 Gibco-BRL (NY, USA)로부터 구입하여 사용하였다.

세포독성 분석 (MTT assay)

RAW264.7 세포를 96 well tissue culture plate (Falcon, USA)에 1×104 세포/㎖로 각 well 당 100 µl씩 분주하여, 24 시간 동안 배양 후 실현에 사용하였다. RAW264.7 세포에 LPS를 단독 혹은 LPS와 ASC를 함께 처리하여 37°C, 5% CO2 조건 하에서 배양하였다. 12시간 후 약물이 포함되어 있는 배지의 MTT reagent (3-[4,5-dimethylthiazole-2-yl]-2,5-diphen-yterza-zolium bromide)를 처리하여 37°C, 5% CO2 조건 하에서 4시간 동안 반응시켰다. 4시간 후 배지를 제거하고 DMSO를 넣어 microplate reader (BMG lab-technologies)의 투광도(540 nm)를 측정하였다. 세포의 생존율은 대조군의 투광도에 대한 실험군의 투광도를 백분율로 환산하여 나타내었다.

프로테오믹스 (Proteomics, 단백질체화)

단백질 추출

RAW264.7 세포에서 LPS를 단독 혹은 LPS와 ASC를 함께 처리한 후 4°C의 PBS buffer (phosphate buffered saline, 0.01 M, pH 7.4)로 2~3회 되워하여 세포를 수거하였다. 수거한 세포를 lysis buffer (5 mM EDTA, 9.5 M urea, 4% (v/v) CHAPS, 65 mM DTT, protease inhibitors (complete kit, Roche Diagnostics, Germany))를 넣어 상온에서 1시간 이상 반응한 후 상온에서 15분간 12,000 rpm으로 원심분리기를 이용하여 단백질을 분리하였다. 분리된 단백질은 Bradford 방법에 의해 정량한 후 동일한 양의 단백질을 이차원 전기영동으로 분석하였다.

이차원 전기영동

pH 3-10의 IEF strips (readyStrip IEF strip, Bio-Rad)에는 300 µg의 단백질과 pH 4-7의 IEF strips에는 400 µg의 단백질을 각각 점착하여 동정질 (isoelectric focusing, IEF) 전기영동을 수행하였다. 이차원 전기영동 장치(SF6000 system, Amersham Pharmacia)에 단백질과 IEF strips생을 넣고 20°C에서 12시간 동안 rehydration하고 IEF strips를 Bio-Rad PROTEAN IEF Cell (Bio-Rad Laboratory Inc.) 장치에 넣어 250 V에 30분, 10,000 V에 3시간 그리고 10,000 V에서 65,000 V로 생길 때까지 12시간 이상의 조건 하에서 focusing을 수행하였다. 동정질 전기영동 후 equilibration buffer (1.5 M Tris-Cl (pH 8.8), 6 M Urea, 2% SDS, 75% glycerol)에 1% DTT를 첨가하여 IEF strips를 30분간 equilibration 후 25% IAA (c-Cyano-4-hydroxy cinnamic acid)를 첨가하여 다시 30분간 equilibration 하였다. Equilibration된 IEF strips를 SDS를 함유한 12% polyacrylamide gel에서 100 V에 30분, 120 V에 2시간, 130 V에 2시간, 140 V에 2시
간 동안에서 전기영동(sodium dodecyl sulfate-polyacrylamide gel electrophoresis, SDS-PAGE)에 이를 단백질을 분리한 뒤 분리하였다.

이차원 전기영동 후 갈염 천영
이차원 전기영동 후 젤(gel)을 fixing buffer (3% phosphoric acid, 50% ethanol)에 30분간 고정하고 빌린된 3차 중류로 30분간 washing하고 equilibration buffer (34% ethanol, 3% phosphoric acid, 17% ammonium sulfate)에 30분 동안 equilibration 한 후 staining buffer (34% ethanol, 3% phosphoric acid, 17% ammonium sulfate, 0.1% coomassie blue G-250)를 이용하여 젤을 염색하였다. 12시간 이상 염색 후 빌린된 3차 중류로 72시간 이상 젤을 탈 염색하였다.

갈염 이미지 분석
이차원 전기영동을 한 갈염의 염색된 단백질 발현 양상을 UMAX PowerLook 1120 scanner (UMAX Technologies, Inc. Dallas, USA)를 이용하여 300 dpi의 해상도로 젤의 이미지를 수치화하였다. 수치화된 이미지를 이미지 분석 프로그램인 IPEQUEST software (version 7.0.1, Bio-Rad)를 이용하여 분석하였고, 단백질에 대한 각 spot의 발현 정도는 유효한 spot의 농도를 기준으로 평준화하였다.

전로부터 단백질 추출
발현 정도의 변화가 있는 각각의 단백질에 대한 spot을 선정하여 단백질을 추출하였다. 선정한 갈염의 단백질 조각에 대해 2배 부피의 washing buffer (50% CH3CN/H2O (v/v))를 넣어 15분간 상온에서 washing 후 다시 washing buffer (100% CH3CN)으로 washing 하였다. 젤 조각은 원료로 변할 때까지 washing 후 washing buffer를 제거하고 rehydration buffer (0.1 M NH4HCO3)를 사용하여 5분간 재수화하였다. 재수화한 젤 조각에 rehydration buffer와 동일한 부피의 washing buffer (100% CH3CN)를 넣어 상온에서 15분간 반응시킨 후 천카니 모든 buffer를 제거하여 최전 정제 능동기 (Concentrator 5301, Eppendorf, Hamburg, Germany)에서 1시간 건조하였다. 건조된 젤 조각은 trypsin (50 ng/μl, Promega, Madison, WI)이 포함된 digestion buffer (5 mM CaCl2, 50 mM NH4HCO3)를 넣어 4℃에서 1시간 반응시켰다. Trypsin의 digestion buffer로 37℃에서 젤 조각을 12~16시간 반응 후 stop buffer (25 mM NH4HCO3)를 넣고 15분간 반응을 중지하고 elution buffer (100% CH3CN)를 넣어 15분간 단백질을 추출하였다. 상호작용을 E-tube에 옮기고 남은 젤 조각에 0.1% TFA (trifluoroacetic acid, Sigma Chemical Co. MO, USA)와 washing buffer (60% CH3CN)를 넣은 후 15분간 반응시켜 상호작용을 E-tube에 옮겨 담는 과정을 2회 수행하였다. 반응과정에서 분리된 상호작용을 모두 혼합하여 최전 정제 능동기 사용하여 완전히 건조시키고 단백질을 0.5% TFA에 matrix (a-cyano-4-hydroxy-cinnamic acid) 5 mg/ml을 넣어 염색하였다. 염색한 단백질과 matrix를 동일한 부피로 혼합한 후 단백질을 단별화하였다.

단백질 동정
단별화한 단백질을 젤량 화학 분석(mass fingerprint modulo)에 의한 단백질 동정을 위해 단백질 시험용품을 동정하기 위해 질량 분석기 Voyager DE-STR MALDI-TOF mass spectrometer (Applied Biosystems, Foster City, CA, USA)를 사용하였다. 양이온 방식(positive ion mode)에서 가속도 전압 (accelerating voltage)은 20 kV로 200 ns 간격으로 분석하였다. 분석된 각각의 단백질 spot은 mass spectrum을 이용하여 확인하였다.

데이터베이스 조사

Reverse transcription-polymerase chain reaction (RT-PCR)
RAW264.7 세포에 LPS (2 μg/μl)와 ascorchlorin (10 μM)을 처리하여 12시간 동안 배양하였다. RNA는 TRIzol (Sigma Chemical Co. MO, USA)를 이용하여 분리하였고, 역전사 효소인 Moloney murine leukemia virus reverse transcriptase (Promega, Madison, WI)을 이용하여 역전사 반응을 시켜 500 ng의 RNA를 최적한 후 RNA로부터 cDNA를 합성하였다. 합성된 cDNA를 이용하여 ERP60, Rabaptin-5, Vimentin, β-actin의 primer를 이용하여 DNA를 증폭시키며 1% agarose gel로 전기영동 하여 DNA의 발현 정도를 확인하였다. RT-PCR 실험에 사용한 primer (Bionics, USA)는 주문 제작하였으며 primer sequences는 Table 1에서 확인할 수 있다. 실험 결과에 대한 각각의 RNA의 발현은 GAPDH 유전자를 표준화하였다.

통계학적 분석
실험결과를 통계처리하는 각 실험군별로 다양성 분석 방법을 사용하였다. 다양성 분석은 Duncan [9]의 다중 검정방법을 이용하였고, 통계처리 후 p 값이 0.05 미만일 경우 (p<0.05) 통계적인 유의성이 있다고 판정하였다.

결 과
RAW264.7 세포에 대한 ascorchlorin의 세포독성 효과
RAW264.7 세포에 대해 LPS 및 ASC에 대한 세포 생존율을 MTT assay 방법으로 확인하였다(Fig. 1). RAW264.7 세포에 각각 무혈청(0.1% FBS)과 혈청(10% FBS)을 함유한 배지에 LPS와 ASC 각각 혹은 함께 12시간 동안 처리
Table 1. Conditions for PCR amplification of the genes studied

<table>
<thead>
<tr>
<th>Gene</th>
<th>Primer sequence (5' to 3')</th>
<th>No. of cycles</th>
<th>Annealing temp.</th>
<th>Linear cycle range</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERP 60</td>
<td>forward: gagaagcagagtgaagccaa reverse: aagggggggggaatgggg</td>
<td>28</td>
<td>69°C</td>
<td>25-30</td>
</tr>
<tr>
<td>Rabaptin-5</td>
<td>forward: gacaatcagtttaagat reverse: ttctatactgcacatataca</td>
<td>30</td>
<td>57°C</td>
<td>26-30</td>
</tr>
<tr>
<td>Vimentin</td>
<td>forward: aaccttgctgccggaccggc reverse: ccctgtcagtctcgagttgc</td>
<td>26</td>
<td>66°C</td>
<td>25-30</td>
</tr>
<tr>
<td>β-actin</td>
<td>forward: agggtctgattggtggtggtgggg reverse: cggatctccatgaggtgct</td>
<td>27</td>
<td>55°C</td>
<td>27-30</td>
</tr>
</tbody>
</table>

RAW264.7 세포에서 이차원 전기영동을 통한 단백질 발현 분석

RAW264.7 세포에 LPS 및 LPS와 ASC를 함께 처리한 후 단백질 발현을 관찰하기 위해 이차원 전기영동을 수행하였으나(Fig. 2), 이미지 분석은 분석 프로그램인 PDQuest을 이용하였다. 실험조건은 LPS 및 LPS와 ASC를 처리 후 이차원 전기영동을 이용하여 단백질 발현을 확인하였다. 동시에 전기영동을 pH 3-10의 pH 4.7 IPG strip을 이용하여 수행한 후 SDS-PAGE를 통해 단백질을 분리한 결과 약 800개의 spot을 확인할 수 있었으며, PDQUEST 이차원 전기영동 소프트웨어를 이용하여 각각 spot의 수치를 확인하였다. 그 중 ASC에 의해 발현 변화가 있는 100여개의 단백질을 분리하여 각각의 단백질에 대한 기능과 역할을 분석하였다(Table 2). 그러나 분자량 100 kDa, pI 9 이상에서는 spot을 판찰할 수 없는 것으로 확인되었다.

Fig. 1. Chemical structure of ascochlorin (ASC) and effects of LPS and ascochlorin on the viability of RAW 264.7 cells. RAW264.7 cells were treated LPS and ASC respectively or combinatorially in serum free (0.1% FBS) or serum (10% FBS) and the cell viability was tested by MTT assay after 12 hr incubation.

Fig. 2. Protein expression maps of RAW264.7 cells. RAW264.7 cells were incubated for 12 hr with LPS (2 μg/ml) and ASC (10 μM) respectively or combinatorially. Proteins from the whole lysates of RAW264.7 cells were separated on a pH 3-10 IPG strips in the first dimension and on an SDS-PAGE gel (12%) in the second dimension. The numbers indicated on the gels correspond to the gel numbers given in Table 2.
Table 2. Differentially Expressed proteins in ASC treated RAW264.7 cells

<table>
<thead>
<tr>
<th>Spot No</th>
<th>Identified protein</th>
<th>Function</th>
<th>Localization</th>
<th>Accession NO</th>
<th>MW (kDa)</th>
<th>pi</th>
<th>MOWSEScore</th>
<th>Coverage (%)</th>
<th>LPS</th>
<th>ASC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Unnamed protein product</td>
<td></td>
<td></td>
<td>BAE41355</td>
<td>41</td>
<td>4.5</td>
<td>2.0E+04</td>
<td>24</td>
<td>-1.18</td>
<td>2.1</td>
</tr>
<tr>
<td>2</td>
<td>ERp60</td>
<td>Binding protein</td>
<td>Endoplasmic reticulum</td>
<td>PI4211</td>
<td>47</td>
<td>4.3</td>
<td>2.18E+07</td>
<td>37</td>
<td>-1.02</td>
<td>1.4</td>
</tr>
<tr>
<td>3</td>
<td>P32-RACK</td>
<td></td>
<td></td>
<td>AAH138075</td>
<td>31</td>
<td>4.8</td>
<td>1616</td>
<td>29</td>
<td>-1.48</td>
<td>1.3</td>
</tr>
<tr>
<td>4</td>
<td>14-3-3 protein epsilon</td>
<td>Binding protein</td>
<td>Cytoplasm</td>
<td>P62259</td>
<td>29</td>
<td>4.6</td>
<td>1042</td>
<td>23</td>
<td>1.0</td>
<td>2.2</td>
</tr>
<tr>
<td>5</td>
<td>Unnamed protein</td>
<td></td>
<td></td>
<td>BAE29904</td>
<td>27</td>
<td>4.9</td>
<td>1483</td>
<td>24</td>
<td>1.2</td>
<td>1.3</td>
</tr>
<tr>
<td>6</td>
<td>Tropomyosin gamma</td>
<td>Actin filament binding</td>
<td></td>
<td>P21107</td>
<td>32</td>
<td>4.7</td>
<td>7.85</td>
<td>14</td>
<td>-1.01</td>
<td>1.1</td>
</tr>
<tr>
<td>7</td>
<td>p23</td>
<td>Microtubule</td>
<td>Cytoplasm</td>
<td>P63028</td>
<td>19</td>
<td>4.8</td>
<td>3271</td>
<td>31</td>
<td>1.0</td>
<td>1.4</td>
</tr>
<tr>
<td>8</td>
<td>Rabaptin-5</td>
<td>Endocytic membrane fusion</td>
<td></td>
<td>O05551</td>
<td>99</td>
<td>5.0</td>
<td>16.5</td>
<td>5</td>
<td>-1.02</td>
<td>1.1</td>
</tr>
<tr>
<td>9</td>
<td>Unnamed protein</td>
<td></td>
<td></td>
<td>BAE39384</td>
<td>52</td>
<td>4.8</td>
<td>50.9</td>
<td>13</td>
<td>1.8</td>
<td>1.7</td>
</tr>
<tr>
<td>10</td>
<td>Dual specificity A-kinase anchoring protein 1</td>
<td>Binding protein</td>
<td>Endoplasmic reticulum</td>
<td>AAC27100</td>
<td>55</td>
<td>4.8</td>
<td>41.5</td>
<td>9</td>
<td>-1.67</td>
<td>1.2</td>
</tr>
<tr>
<td>11</td>
<td>Heat shock protein 90 kDa beta member 1</td>
<td>Transport</td>
<td>Endoplasmic reticulum</td>
<td>P08113</td>
<td>92</td>
<td>4.7</td>
<td>883</td>
<td>12</td>
<td>3.2</td>
<td>3.5</td>
</tr>
<tr>
<td>12</td>
<td>Rabaptin-5</td>
<td>Endocytic membrane fusion</td>
<td></td>
<td>O35551</td>
<td>99</td>
<td>5.0</td>
<td>117</td>
<td>6</td>
<td>-1.86</td>
<td>1.3</td>
</tr>
<tr>
<td>13</td>
<td>p55</td>
<td>Catalyze</td>
<td>Endoplasmic reticulum</td>
<td>P09103</td>
<td>57</td>
<td>4.8</td>
<td>4562</td>
<td>14</td>
<td>1.4</td>
<td>5.7</td>
</tr>
<tr>
<td>14</td>
<td>Unnamed protein product</td>
<td></td>
<td></td>
<td>BAE30036</td>
<td>42</td>
<td>4.9</td>
<td>2.9</td>
<td>9</td>
<td>1.2</td>
<td>2.3</td>
</tr>
<tr>
<td>15</td>
<td>Unnamed protein product</td>
<td></td>
<td></td>
<td>BAB30036</td>
<td>42</td>
<td>4.9</td>
<td>2.9</td>
<td>9</td>
<td>1.2</td>
<td>2.3</td>
</tr>
<tr>
<td>16</td>
<td>Similar to pleckstrin homology-like domain</td>
<td>Regulates GDP/GTP</td>
<td>Cytoplasm</td>
<td>XP911547</td>
<td>37</td>
<td>4.8</td>
<td>48</td>
<td>15</td>
<td>1.2</td>
<td>1.9</td>
</tr>
<tr>
<td>17</td>
<td>Rho-GDI beta</td>
<td>Regulates GDP/GTP</td>
<td>Cytoplasm</td>
<td>Q61599</td>
<td>22</td>
<td>5.0</td>
<td>1511</td>
<td>38</td>
<td>1.3</td>
<td>1.9</td>
</tr>
<tr>
<td>18</td>
<td>Vimentin</td>
<td></td>
<td></td>
<td>2078001</td>
<td>51</td>
<td>5.0</td>
<td>1.0E+05</td>
<td>34</td>
<td>1.1</td>
<td>2.3</td>
</tr>
<tr>
<td>19</td>
<td>Unnamed protein</td>
<td></td>
<td></td>
<td>BAE22472</td>
<td>43</td>
<td>5.1</td>
<td>7.0E+04</td>
<td>26</td>
<td>-1.1</td>
<td>-1.1</td>
</tr>
<tr>
<td>20</td>
<td>Tubulin beta-5 chain</td>
<td>Constituent of microtubule</td>
<td></td>
<td>P99024</td>
<td>49</td>
<td>4.8</td>
<td>1.0E+04</td>
<td>21</td>
<td>-1.32</td>
<td>4.6</td>
</tr>
<tr>
<td>21</td>
<td>Ras-related protein Rap-2a</td>
<td>Assembly of multimeric protein complex</td>
<td></td>
<td>Q80ZJ1</td>
<td>20</td>
<td>4.7</td>
<td>2.41</td>
<td>32</td>
<td>1.3</td>
<td>1.5</td>
</tr>
<tr>
<td>22</td>
<td>EF-1-gamma</td>
<td></td>
<td></td>
<td>XP925770</td>
<td>18</td>
<td>4.9</td>
<td>655</td>
<td>19</td>
<td>1.3</td>
<td>3.1</td>
</tr>
<tr>
<td>23</td>
<td>Heat shock 70 kDa protein 5</td>
<td>Production of cytokines</td>
<td>Cytoplasm</td>
<td>P20029</td>
<td>72</td>
<td>5.1</td>
<td>2.20E+07</td>
<td>26</td>
<td>1.1</td>
<td>1.9</td>
</tr>
<tr>
<td>24</td>
<td>MAP kinase p38 alpha</td>
<td>Regulates GDP/GTP</td>
<td>Cytoplasm</td>
<td>P47811</td>
<td>41</td>
<td>5.5</td>
<td>316</td>
<td>23</td>
<td>1.2</td>
<td>1.6</td>
</tr>
<tr>
<td>25</td>
<td>Catenin beta-1</td>
<td>Signal transduction</td>
<td>Cytoplasm</td>
<td>Q02248</td>
<td>85</td>
<td>5.5</td>
<td>2.45</td>
<td>9</td>
<td>-1.32</td>
<td>1.4</td>
</tr>
<tr>
<td>26</td>
<td>Testase-3</td>
<td>Spermatogensis and fertilization</td>
<td>Membrane</td>
<td>Q9R158</td>
<td>78</td>
<td>5.7</td>
<td>204</td>
<td>8</td>
<td>1.6</td>
<td>2.1</td>
</tr>
<tr>
<td>27</td>
<td>Heat shock protein 60</td>
<td>Promote refolding</td>
<td>Mitochondria</td>
<td>P63038</td>
<td>60</td>
<td>5.9</td>
<td>2.0E+05</td>
<td>24</td>
<td>1.2</td>
<td>2.1</td>
</tr>
<tr>
<td>28</td>
<td>GRP 75</td>
<td>Cell proliferation</td>
<td>Mitochondria</td>
<td>P38647</td>
<td>73</td>
<td>5.9</td>
<td>2.0E+05</td>
<td>20</td>
<td>-1.49</td>
<td>2.2</td>
</tr>
<tr>
<td>29</td>
<td>Heat shock 70 kDa protein 8</td>
<td>Chaperone</td>
<td>Cytoplasm</td>
<td>P63017</td>
<td>70</td>
<td>5.4</td>
<td>3988</td>
<td>17</td>
<td>-1.21</td>
<td>1.8</td>
</tr>
<tr>
<td>30</td>
<td>TCP-1-epsilon</td>
<td>Chaperone</td>
<td>Cytoplasm</td>
<td>P80036</td>
<td>59</td>
<td>5.7</td>
<td>1570</td>
<td>13</td>
<td>-1.5</td>
<td>1.2</td>
</tr>
<tr>
<td>31</td>
<td>p58</td>
<td>Catalyze</td>
<td>Endoplasmic reticulum</td>
<td>P27773</td>
<td>56</td>
<td>6.0</td>
<td>2.0E+05</td>
<td>22</td>
<td>1.1</td>
<td>1.8</td>
</tr>
<tr>
<td>34</td>
<td>C-terminal LIM domain protein 1</td>
<td>Cytoskeletal protein</td>
<td>Cytoplasm</td>
<td>070400</td>
<td>35</td>
<td>6.4</td>
<td>7.44</td>
<td>16</td>
<td>1.1</td>
<td>1.2</td>
</tr>
<tr>
<td>35</td>
<td>unnamed protein product</td>
<td></td>
<td></td>
<td>BAE25105</td>
<td>30</td>
<td>6.8</td>
<td>48</td>
<td>16</td>
<td>1.4</td>
<td>1.6</td>
</tr>
<tr>
<td>36</td>
<td>Similar to RNA binding motif protein 17</td>
<td></td>
<td></td>
<td>6354814</td>
<td>40</td>
<td>6.6</td>
<td>14.7</td>
<td>14</td>
<td>-1.02</td>
<td>1.1</td>
</tr>
<tr>
<td>37</td>
<td>Peroxin-26</td>
<td></td>
<td>Peroxisome</td>
<td>Q884F5</td>
<td>34</td>
<td>6.3</td>
<td>847</td>
<td>25</td>
<td>1.1</td>
<td>1.3</td>
</tr>
<tr>
<td>38</td>
<td>Activation B7-1 antigen</td>
<td>Lymphocytes activation</td>
<td>Membrane</td>
<td>Q00609</td>
<td>34</td>
<td>7.0</td>
<td>1044</td>
<td>22</td>
<td>-1.08</td>
<td>1.2</td>
</tr>
<tr>
<td>39</td>
<td>AIP1</td>
<td>Disassembly of actin filament</td>
<td></td>
<td>O88342</td>
<td>66</td>
<td>6.1</td>
<td>5.6E+05</td>
<td>31</td>
<td>1.1</td>
<td>1.0</td>
</tr>
<tr>
<td>40</td>
<td>Flotillin-1</td>
<td>Formation of caveolae</td>
<td>Cell membrane</td>
<td>O08917</td>
<td>47</td>
<td>6.7</td>
<td>3350</td>
<td>24</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>41</td>
<td>Cysteine-S-conjugate beta-lyase</td>
<td>Catalyze</td>
<td>Cytoplasm</td>
<td>Q86TY1</td>
<td>47</td>
<td>6.5</td>
<td>1531</td>
<td>17</td>
<td>-1.15</td>
<td>-1.12</td>
</tr>
<tr>
<td>42</td>
<td>Protein MAIR</td>
<td>Tumor suppressor</td>
<td>Cytoplasm</td>
<td>Q8C006</td>
<td>57</td>
<td>6.7</td>
<td>442</td>
<td>14</td>
<td>1.6</td>
<td>1.8</td>
</tr>
<tr>
<td>43</td>
<td>Homeobox protein CHX10</td>
<td>Cell development</td>
<td>Nucleus</td>
<td>Q61412</td>
<td>39</td>
<td>7.1</td>
<td>763</td>
<td>24</td>
<td>1.5</td>
<td>1.4</td>
</tr>
<tr>
<td>44</td>
<td>Cagp protein</td>
<td></td>
<td></td>
<td>13097498</td>
<td>38</td>
<td>6.5</td>
<td>27453</td>
<td>29</td>
<td>1.6</td>
<td>1.5</td>
</tr>
<tr>
<td>45</td>
<td>Alpha-adaptin C</td>
<td>Adaptor protein</td>
<td>Cell membrane</td>
<td>P17427</td>
<td>104</td>
<td>6.5</td>
<td>66.4</td>
<td>6</td>
<td>-4.48</td>
<td>-1.25</td>
</tr>
<tr>
<td>46</td>
<td>IMP cyclohydrolase</td>
<td>Catalyze</td>
<td>Cytoplasm</td>
<td>Q9CW9J</td>
<td>64</td>
<td>6.3</td>
<td>135</td>
<td>10</td>
<td>1.4</td>
<td>1.2</td>
</tr>
<tr>
<td>47</td>
<td>Annexin A1</td>
<td>Exocytosis</td>
<td></td>
<td>P10107</td>
<td>38</td>
<td>7.1</td>
<td>1.2E+06</td>
<td>38</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>48</td>
<td>PGAM-B</td>
<td>Catalyze</td>
<td>Cytoplasm</td>
<td>Q9DBB1</td>
<td>28</td>
<td>6.8</td>
<td>2.6E+05</td>
<td>43</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>49</td>
<td>Pyruvate kinase isozyme M2</td>
<td>Catalyze</td>
<td></td>
<td>P52480</td>
<td>57</td>
<td>7.4</td>
<td>7469</td>
<td>25</td>
<td>1.2</td>
<td>1.3</td>
</tr>
<tr>
<td>50</td>
<td>Annexin A11</td>
<td>Binding</td>
<td>Nucleus</td>
<td>P97384</td>
<td>54</td>
<td>7.5</td>
<td>476</td>
<td>12</td>
<td>1.0</td>
<td>-1.09</td>
</tr>
<tr>
<td>51</td>
<td>Hypothetical protein XP_921701</td>
<td></td>
<td></td>
<td>82931970</td>
<td>32</td>
<td>7.3</td>
<td>326</td>
<td>26</td>
<td>1.9</td>
<td>-1.42</td>
</tr>
<tr>
<td>52</td>
<td>VDAC-2</td>
<td></td>
<td>Mitochondria</td>
<td>Q69390</td>
<td>31</td>
<td>7.4</td>
<td>535</td>
<td>19</td>
<td>1.6</td>
<td>1.2</td>
</tr>
<tr>
<td>53</td>
<td>Pyruvate kinase isozyme M2</td>
<td>Catalyze</td>
<td></td>
<td>P52480</td>
<td>57</td>
<td>7.4</td>
<td>1.2E+08</td>
<td>28</td>
<td>1.0</td>
<td>-1.79</td>
</tr>
<tr>
<td>54</td>
<td>Natural killer cell receptor LY49W2</td>
<td></td>
<td></td>
<td>AAG10158</td>
<td>30</td>
<td>8.4</td>
<td>54.5</td>
<td>21</td>
<td>3.0</td>
<td>1.8</td>
</tr>
<tr>
<td>55</td>
<td>LDH muscle subunit</td>
<td>Catalyze</td>
<td>Cytoplasm</td>
<td>P06151</td>
<td>36</td>
<td>7.8</td>
<td>70.6</td>
<td>18</td>
<td>1.6</td>
<td>1.0</td>
</tr>
<tr>
<td>56</td>
<td>Lipoma HMGIC fusion partner precursor</td>
<td></td>
<td>Membrane</td>
<td>Q8BM86</td>
<td>21</td>
<td>7.9</td>
<td>389</td>
<td>10</td>
<td>1.3</td>
<td>1.1</td>
</tr>
<tr>
<td>57</td>
<td>Pyruvate kinase isozyme M2</td>
<td>Catalyze</td>
<td></td>
<td>P52480</td>
<td>57</td>
<td>7.4</td>
<td>9128</td>
<td>14</td>
<td>-1.02</td>
<td>-1.19</td>
</tr>
<tr>
<td>58</td>
<td>Pyruvate kinase isozyme M2</td>
<td>Catalyze</td>
<td></td>
<td>P52480</td>
<td>57</td>
<td>7.4</td>
<td>1.2E+05</td>
<td>15</td>
<td>1.3</td>
<td>1.8</td>
</tr>
<tr>
<td>59</td>
<td>TGF-beta receptor type I</td>
<td>Signal transduction</td>
<td>Membrane</td>
<td>Q64729</td>
<td>56</td>
<td>7.2</td>
<td>134</td>
<td>4</td>
<td>1.8</td>
<td>1.5</td>
</tr>
<tr>
<td>60</td>
<td>Unnamed protein product</td>
<td></td>
<td></td>
<td>BAE22496</td>
<td>35</td>
<td>6.4</td>
<td>113</td>
<td>16</td>
<td>-1.36</td>
<td>-1.18</td>
</tr>
<tr>
<td>61</td>
<td>Calnexin precursor</td>
<td>Binding protein</td>
<td>Endoplasmic reticulum</td>
<td>P35564</td>
<td>67</td>
<td>4.5</td>
<td>6.32</td>
<td>6</td>
<td>-3</td>
<td>-2.02</td>
</tr>
<tr>
<td>62</td>
<td>ERP60</td>
<td>Promote folding</td>
<td>Endoplasmic reticulum</td>
<td>P14211</td>
<td>47</td>
<td>4.3</td>
<td>289</td>
<td>15</td>
<td>-1.75</td>
<td>-5.3</td>
</tr>
<tr>
<td>63</td>
<td>q subcomponent binding protein</td>
<td></td>
<td></td>
<td>AAH38075</td>
<td>31</td>
<td>4.8</td>
<td>252</td>
<td>26</td>
<td>-3.64</td>
<td>-4.4</td>
</tr>
<tr>
<td>64</td>
<td>Unnamed protein product</td>
<td></td>
<td></td>
<td>BAC30908</td>
<td>30</td>
<td>5</td>
<td>5796</td>
<td>20</td>
<td>-1.42</td>
<td>-1.94</td>
</tr>
<tr>
<td>65</td>
<td>Unnamed protein product</td>
<td></td>
<td></td>
<td>BAE37711</td>
<td>22</td>
<td>4.8</td>
<td>181</td>
<td>16</td>
<td>-2</td>
<td>-2.08</td>
</tr>
<tr>
<td>66</td>
<td>Similar to A-kinase anchor protein 13 isofrom 2 isofrom 17</td>
<td></td>
<td></td>
<td>XP925288</td>
<td>26</td>
<td>4.6</td>
<td>4.36</td>
<td>11</td>
<td>-1.16</td>
<td>-2.65</td>
</tr>
<tr>
<td>67</td>
<td>Rabaptin-5</td>
<td>Actin filament binding</td>
<td>Cytoplasm</td>
<td>Q65551</td>
<td>99</td>
<td>5</td>
<td>3.34</td>
<td>5</td>
<td>-3.18</td>
<td>-2.63</td>
</tr>
<tr>
<td>68</td>
<td>Bcl-2-like 1 protein</td>
<td>Potent inhibitor of cell death</td>
<td>Mitochondria</td>
<td>Q64373</td>
<td>26</td>
<td>4.9</td>
<td>176</td>
<td>18</td>
<td>-1.33</td>
<td>-1.83</td>
</tr>
<tr>
<td>69</td>
<td>Proteasome zeta chain</td>
<td></td>
<td></td>
<td>XP620109</td>
<td>20</td>
<td>4.9</td>
<td>6899</td>
<td>32</td>
<td>-1.05</td>
<td>-1.7</td>
</tr>
<tr>
<td>ID</td>
<td>Description</td>
<td>Fold/Structure</td>
<td>Localization</td>
<td>Accession</td>
<td>Mw</td>
<td>PI</td>
<td>MW/PI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>------------------------------------------------------------------------------</td>
<td>----------------</td>
<td>-----------------------</td>
<td>-----------</td>
<td>----</td>
<td>----</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>Hypothetical protein LOC74890 isofrm 1</td>
<td></td>
<td></td>
<td>XP132350</td>
<td>18</td>
<td>4.7</td>
<td>56.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>Breakpoint 3 isofrm 1</td>
<td></td>
<td></td>
<td>XP892058</td>
<td>20</td>
<td>4.9</td>
<td>60.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>Unnamed protein product</td>
<td></td>
<td></td>
<td>BAIE9114</td>
<td>42</td>
<td>4.7</td>
<td>14.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>Glycine cleavage system H protein</td>
<td>Catalyze</td>
<td>Mitochondria</td>
<td>Q91WK5</td>
<td>18</td>
<td>4.8</td>
<td>13.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>Heat shock protein 60 (Hsp60)</td>
<td></td>
<td>Cytoplasm</td>
<td>XP912216</td>
<td>30</td>
<td>5.1</td>
<td>140</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>cAMP-dependent protein kinase type I-alpha regulatory subunit</td>
<td></td>
<td></td>
<td>Q9D8C7</td>
<td>43</td>
<td>5.3</td>
<td>155</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>UNR-interacting protein</td>
<td>Transcription factor</td>
<td>Cytoplasm</td>
<td>Q9Z1Z2</td>
<td>38</td>
<td>5</td>
<td>369</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>26S proteasome-associated UCH37-interacting protein 1</td>
<td></td>
<td></td>
<td>Q88K78</td>
<td>27</td>
<td>5.1</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>Hypothetical protein XP_898013 isofrm 2</td>
<td></td>
<td></td>
<td>XP903106</td>
<td>14</td>
<td>4.7</td>
<td>63.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>Heat shock 70 kDa protein 5 (GRP 78)</td>
<td>Protein folding</td>
<td>Endoplasmic reticulum</td>
<td>P20029</td>
<td>72</td>
<td>5.1</td>
<td>689</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>Heat shock 70 kDa protein 5 (GRP 78)</td>
<td>Protein folding</td>
<td>Endoplasmic reticulum</td>
<td>P20029</td>
<td>72</td>
<td>5.1</td>
<td>689</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>Heat shock 70 kDa protein 5 (GRP 78)</td>
<td>Protein folding</td>
<td>Endoplasmic reticulum</td>
<td>P20029</td>
<td>72</td>
<td>5.1</td>
<td>7697</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>Glypican-6 precursor</td>
<td></td>
<td>Cell membrane</td>
<td>Q9R087</td>
<td>63</td>
<td>5.3</td>
<td>117</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>Actin (Beta-actin)</td>
<td></td>
<td>Cytoplasm</td>
<td>P60710</td>
<td>41</td>
<td>5.3</td>
<td>850</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>Heat shock 70 kDa protein 5 (GRP 78)</td>
<td>Protein folding</td>
<td>Endoplasmic reticulum</td>
<td>P20029</td>
<td>72</td>
<td>5.1</td>
<td>3.7E+06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>Heat shock 70 kDa protein 5 (GRP 78)</td>
<td>Protein folding</td>
<td>Endoplasmic reticulum</td>
<td>P20029</td>
<td>72</td>
<td>5.1</td>
<td>9.4E+05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>Archaemetzincin-1</td>
<td>Protein folding</td>
<td>Endoplasmic reticulum</td>
<td>Q8BF79</td>
<td>55</td>
<td>5.7</td>
<td>114</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>Similar to cytoplasmic beta-actin isofrm 1</td>
<td></td>
<td></td>
<td>XP619399</td>
<td>37</td>
<td>5.3</td>
<td>2.1E+04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>Heat shock 70 kDa protein 8</td>
<td>Chaperone</td>
<td>Cytoplasm</td>
<td>P63017</td>
<td>70</td>
<td>5.4</td>
<td>5819</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>Coiled-coil domain-containing protein 2</td>
<td></td>
<td>Cytoplasm</td>
<td>Q9JGC7</td>
<td>70</td>
<td>5.7</td>
<td>380</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>Heat shock protein 60 (Hsp60)</td>
<td>Protein folding</td>
<td>Mitochondria</td>
<td>P63038</td>
<td>60</td>
<td>5.9</td>
<td>2744</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>Carboxy terminus of Hsp70-interacting protein</td>
<td>Chaperone</td>
<td>Cytoplasm</td>
<td>Q9WUD1</td>
<td>34</td>
<td>5.7</td>
<td>7.39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>Apolipoprotein E precursor (Apo-E)</td>
<td>Binding protein</td>
<td>Secreted protein</td>
<td>P08226</td>
<td>35</td>
<td>5.6</td>
<td>2.34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>PtdIns transfer protein alpha (PtdInsTP)</td>
<td>Catalyze</td>
<td>Cytoplasm</td>
<td>P53810</td>
<td>31</td>
<td>6.0</td>
<td>7.65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>V-ATPase H subunit</td>
<td>Transport</td>
<td></td>
<td>Q8BVE3</td>
<td>55</td>
<td>6.2</td>
<td>855</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>Dynein light intermediate chain 2</td>
<td></td>
<td></td>
<td>Q6PD0</td>
<td>54</td>
<td>6.1</td>
<td>1055</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>CytosolicNADP-isocitrate dehydrogenase</td>
<td></td>
<td>Cytoplasm</td>
<td>Q88944</td>
<td>46</td>
<td>6.5</td>
<td>12.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>4'-phosphopantetheiny transferase</td>
<td>Catalyze</td>
<td>Cytoplasm</td>
<td>Q9C0F6</td>
<td>35</td>
<td>6.7</td>
<td>595</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>Vimentin</td>
<td></td>
<td></td>
<td>P20152</td>
<td>53</td>
<td>5.1</td>
<td>3344</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>Tubulin beta-6 chain</td>
<td>Constituent of microtubule</td>
<td></td>
<td>Q922F4</td>
<td>50</td>
<td>4.8</td>
<td>125</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
질량 분석기(MALDI-TOF)를 이용한 단백질 발현 분석
800여개의 spot 중 ASC에 의해 발현 변화를 보인 100개의 spot은 MALDI-TOF를 통해 분석되었다.(Fig. 3). 분석한 단백질은 분자량 20kDa 내외, pI가 0.5kDa 내외의 기준으로 선정하였다. 선택된 단백질 100개 중 약 37%의 단백질이 LPS와 ASC에 의해 발현이 조절될을 확인할 수 있었으며, 발현 변화가 확인된 단백질 중에는 염증 유발에 관여하는 단백질로 vimentin 단백질과 ER60 (calreticulin) 단백질 및 Heat Shock Protein (HSP)이 포함되어 있었다. 또한 세포사멸을 억제하는 단백질인 Bcl-2 단백질과 세포사멸을 유도하는 단백질인 Annexin family 단백질이 포함되어 있었다.

단백질 가용 분석 프로그램(Swiss-Port/TrEMBL)을 이용한 단백질의 가용 및 위치별 분석
질량 분석기를 통하여 발현 변화가 확인된 단백질은 PubMed (http://www.ncbi.nlm.nih.gov/PubMed)와 Swiss-Port/TrEMBL (http://au.expasy.org/sport)의 정보를 이용하여 분석하였다. 분류 결과 동정 가능한 단백질 중 세포성장 및 유지(cell growth and maintenance) 그리고 세포사멸 (metabolism) 관련 단백질이 50% 이상을 차지하였고 그 밖에 전사(transcription factor), 세포경합(binding), 신호전달 (signal transduction), 단백질 볼딩 (protein folding) 및 면역 반응(immune response) 관련 단백질 등에서 발현 변화를 보임을 확인할 수 있었다.(Fig. 4A). 또한 발현차이를 보인 단백질들 중 세포내 위치별로 분류해 본 결과 세포질에 존재하는 단백질이 20%, 소포질에 위치한 단백질이 14%로 확인되었다. 그 밖에 세포핵에 9%, 미토콘드리아에 6% 및 핵 내 단백질이 3% 정도 존재하는 것을 확인하였다.(Fig. 4B).

세포 성장과 관련된 단백질은 전체의 9%를 차지하며, ER60 (calreticulin)과 apolipoprotein E (ApoE), annexin A1이

Fig. 3. MALDI-TOF spectrum of tropic fragments of 2-D gel spot. MALDI-TOF MS peptide mass fingerprint spectrum obtained from crude mixture after in-gel tropic digest of spots. The spectra of MALDI-TOF obtained from Vimentine (A) and Calreticulin (B).

chain, β-actin이 다른 단백질에 비해 발현 변화의 차이가 크게 나타나는 것으로 확인되었다. Vimentin은 RAW264.7 세포에서 LPS 처리시 단백질 발현량이 2.5배 감소하였으며, LPS와 ASC를 함께 처리한 경우 ASC에 의해 단백질의 발현량이 3배 감소하였다. Bcl-2는 RAW264.7 세포에 LPS 처리시 단백질의 발현량이 1배 감소하였고, LPS와 ASC를 함께 처리시 단백질의 발현량이 2배 정도 감소하였다. Tubulin beta-6 chain은 LPS에 의해 단백질 발현량이 1.5배 감소하였으며, LPS와 ASC를 함께 처리한 경우 ASC에 의해 단백질 발현량이 3.5배 감소하였다. β-actin은 LPS를 처리한 경우 단백질의 발현량이 2배 감소하였고, LPS와 ASC를 함께 처리시 단백질의 발현량이 4.5배 감소하는 것으로 확인되었다.

세포사멸 관련 단백질은 전체의 14%를 차지하며, 확인된 단백질에는 Mitochondrial precursor, pdtinsTP 등이 포함되어 있었다. 세포사멸 관련 단백질인 Mitochondrial precursor와 pdtinsTP는 RAW264.7 세포에 LPS 처리시 단백질의 발현량이 1.5배 감소하였으며, LPS와 ASC를 함께 처리한 경우 ASC에 의해 단백질 발현량이 2.5배 감소하였다.

세포경합 관련 단백질은 전체의 9%를 차지하며, ER60 (calreticulin)과 apolipoprotein E (ApoE), annexin A1이

Fig. 4. Functional classification and Localization of the differentially expressed proteins identified. Pie Charts representing the distribution of the 100 identified proteins according to their biological functions are shown. Assignments were made based on information form the NCBI (www.ncbi.nlm.nih.gov/Pubmed) and the Swiss-Port/TrEMBL protein knowledgebase (http://au.expasy.org/sport) websites.
RAW264.7 세포에서 LPS와 ASC에 의해 단백질 발현이 변화하는 것으로 확인되었다. ERp60과 ApoE 단백질은 RAW264.7 세포에서 LPS에 의해 단백질 발현량이 각각 2배 감소하였고, LPS와 ASC를 함께 처리한 경우에도 ASC에 의해 단백질 발현량이 각각 4배 감소하였다. 그러나 annexin A11은 RAW264.7 세포에 LPS 처리 시 단백질의 발현량이 1배 증가하였고, LPS와 ASC를 함께 처리한 경우 ASC에 의해 단백질의 발현량이 2배 감소하였다.

RT-PCR을 이용한 mRNA 발현 확인
LPS를 처리한 RAW264.7 세포에 ASC 처리로 단백질 변형이 조절된 4개의 유전자는 RT-PCR 수행하여 프로테오믹스 결과를 확인하였다. ERp60, rabaptin-5, vimentin, β-actin 유전자 mRNAs 발현 정도는 농도계(Quantity One, BIO-Rad)를 이용하여 수치화하였다. ERp60 mRNA와 β-actin mRNA의 발현 양상은 LPS를 단독으로 처리하였을 경우 보다 LPS와 ASC를 함께 처리하였을 경우 각각 mRNAs의 발현은 4배 감소하였고(Fig. 5A and 5B), vimentin mRNA의 발현은 LPS와 ASC를 함께 처리하였을 때 3배로 감소하였다(Fig. 5C). 반면 Rabaptin-5 mRNA 발현은 LPS와 ASC를 함께 처리하였을 경우 발현량이 2배 정도 증가하였으며(Fig. 5D), 이 결과는 ASC와 전이기능에 의한 단백질 발현 변화와 RT-PCR을 통해 mRNA의 발현 변화가 일치함을 확인할 수 있었다.

![Fig. 5. RT-PCR analysis of gene expression in RAW264.7 cells. Raw264.7 cells were treated with LPS (2 μg/ml) and ASC (10 μM) respectively or concomitantly for 12 hr. And the expression of selected genes were determined by RT-PCR. The specific primers used in RT-PCR were described in Table 1. GAPDH was used as the control, and the data presented are averages of three experiments.](image)

결과 및 고찰
Ascorchlorin (ASC)는 항혈아스성, 항균 그리고 항암 효과를 가진 생리활성 물질로 알려져 있으며[16,19] 변역체포 ASC에 ASC에 의해 조절되는 세포 내 단백질에 대한 연구는 미비한 실정이다. 본 연구에서는 LPS를 처리한 RAW264.7 세포에 ASC에 대한 단백질 변화 양상을 확인하기 위해 이차 원전영동을 이용한 프로테오믹스 연구를 수행하였다.

프로테오믹스는 프로테아스 재계로 연구하는 학문으로 지능을 연구하는 자기학의 연구라고 구별되며 프로테아스는 특정 조건에서 지능으로부터 분리되는 다양한 단백질을 식별할 수 있는 학문의 영역으로 최근에는 프로테오믹스의 개선된 방법으로 단백질들을 효과적으로 분리하거나 분석할 기술이 개발되고 있다[2,36,39,43,51].

대체세포주인 RAW264.7 세포에 LPS 및 ASC를 합계 처리한 후 이차원 전이기능을 한 개 단백질 발현 비율이 있는 100개의 단백질을 확인할 수 있었으며, 이들은 pH 3-10 범위에서 60개, pH 4-7 범위에 40개의 단백질이 존재하게 된다(2).

확산된 단백질들은 기능 및 세포 내 위치별로 분류해 본 결과에 있어서(cell growth and maintenance) 단백질이 20%를 차지하였으며, 위치에 대한 분포에서 존재하는 단백질이 20%를 차지하였다. 그러나 아직 기능이나 세포 내 위치가 알려지지 않은 단백질도 많이 존재함을 확인할 수 있었다 (Fig. 3).

두드리기 발현 변화를 보인 단백질 중 vimentin, ERp60 (calreticulin), rabaptin-5, Bcl-2, annexin A11은 영구 작용과 세포 사멸과 관련된 것으로 알려져 있다[13,24,26,29].

항암증 발병과 관련된 단백질 중 ERp60은 유전자 발현에 분화추가, 그리고 세포의 향상성 유전자와 같은 값을 갖는 단백질로 알려져 있으며[32,41,45]. 또한 유전자 조절이 세포조직에서 표적 단백질로 보고되어 있다[22]. 알루미 항암증 작용에 도 ERp60이 관여하는 것으로 알려져 있다[12,13,26,35,40,46]. Table 2와 Fig. 5에 나타난 바와 같이 암증 발병에서 증가된 ERp60의 단백질과 유전자의 발현은 ASC의 처리에 의해 감소되었다. 이 결과는 영구 발병에서 ASC가 ERp60 단백질과 mRNA 발현 수준을 조절하며 ASC가 항암증 작용을 조절하는 것으로 생각된다.

Heat shock protein (HSP)는 외부의 환경과 산화적 스트레스에 대해 세포를 보호하며, 암증발병에도 관련된 것으로 보고되어 있다[14,31]. 세포가 정상적인 범위 이상의 온도에 노출되면 HSP가 세포를 보호하는 역할을 하는 것으로 알려져 있다[42]. 이론이 진행되는 과정에 관여하는 것으로 알려져 있는데[30], 본 연구 결과에서는 LPS에 의해 증가된 단백질 발현이 ASC 처리시 감소하는 것을 확인할 수 있었다. 이러한 결과는 ASC가 항암증 작용에 관여하는 것으로 보임된다.
LPS는 염증 반응과 아울러 사포세포를 유도하는 것으로 알려져 있다. 사포세포(apoptosis)는 DNA에 손상을 주는 산화적 스트레스, UV 또는 특성질과 같은 외부요소에 대해 세포가 이를 극복하지 못하고 스스로 죽음을 선택하는 것을 가리키며, 이러한 외부요소에 의해 전형적인 사포을 하지 못하는 세포의 자살을 유도하여 개체의 환경으로 유지하는 것이다. 그러나 정상적으로 사포세포는 유도되지 않은 경우, 암 발생 및 발바른 감염 등에 의한 면역질환을 야기할 수 있다[15, 21, 28, 감염 및 바이러스 감염, 포도상구균 감염 등에게 면역질환을 야기할 수 있다[15, 21, 28]. 본 연구에서는 이러한 사포세포 모란에 관련된 면역반응을 확인하는데 [6, 38, 50], 염증의 확산을 막고 조직과 각 기관의 기능을 유지하는 방어 기전인 사포세포는 질병에 중요한 역할을 하는 것으로 보고되어 있다[18, 29]. 본 연구에서는 몽성의 사포세포 과정에 관련된 단백질을 확인 할 수 있었다. 그 중 Vimentin은 세포 사멸 시 발현이 감소하는 것으로 알려져 있다. 본 연구에서는 LPS를 처리하여 염증 반응을 일으킨 RAW264.7 세포에서 ASC의 처리시 LPS에서 증가된 vimentin은 ASC 처리시 감소되는 것을 확인하였다. 또한 Table 2에 나타난 것과 같이 세포세포를 조절하는 단백질인 Bcl-2 family 단백질 발현이 변화하는 것은 확인 할 수 있었다.

Bcl-2 단백질은 세포세포를 약화하는 antiapoptotic 유전자로 알려져 있으며[3], 이 단백질은 미토콘드리아 형태를 보존하여 세포세포를 약화한다고 보고되었다[37]. 본 연구에서는 LPS를 처리한 RAW264.7 세포에서 ASC의 처리시 Bcl-2를 발현을 감소시켰으며, 이 결과는 ASC가 세포세포에도 관여하는 것으로 시사하였다.

다음으로 Rabaptin-5 (RABPT5)은 자가 변형 현상에서 autoantigen으로 작용하여 세포 세멸에 관여하며, 이는 rabaptin-5 gamma와 rabaptin-5 delta 등으로 구성된 rabaptin-5의 family이며, 세포 내 막 결합/융합(docking/fusion) 반응에 관여하는 GTP-binding 단백질 군이다[10, 32]. Table 2에 나타난 바와 같이 LPS를 처리한 RAW264.7 세포에서 ASC의 처리 rabaptin-5를 증가시켰으며, 이 결과는 ASC가 Bcl-2뿐만 아니라 rabaptin-5를 조절하여 세포세포에 관여하는 것으로 생각된다.

결론적으로 본 연구를 통해 RAW264.7 세포를 이용한 면역세포 모란에서 ASC가 항암작용을 중심으로하여 생리 활성 조절기능을 확인 할 수 있었다. 향후 분자 기능 조절 연구와 전 dissect 연구를 통해 ASC의 생리활성 조절 기능을 규명한다면 ASC는 항암증 및 항암활성을 갖는 약물로 개발될 것으로 기대된다.

요 약

아스코천린(Ascosclorin, ASC)은 Ascochyta viciae로부터 추출된 프레임파름 물질로, 혈청 플래스테롤과 트리글리세

拉アイド수치를 감소시키고 중량 성장을 억제한다는 연구 결과가 보고되어 있다. 본 논문에서는 아스코천린이 생리학적 혹은 면역학적의 항염증반응에서 억제적으로 유

도되는 반응을 어떻게 조절하며, 이러한 메커니즘에 대해 이

해하기 위해 mouse macrophage Raw264.7 세포에 아스코천

린을 처리하여 이에 대한 프로테인의 특이적인 발현에 대

해 분석하였다. 따라서 본 연구는 LPS를 처리한 mouse macrophage Raw264.7 세포에 아스코천린을 처리하여 염증과

정에 관련된 단백질의 발현 양상을 확인하기 위해 프로테이

믹스를 시행하였다.

Mouse macrophage RAW264.7 세포에 아스코천린을 처리한 조건과 무처리한 조건으로 나누어 two-dimensional electrophoresis (2-D SDS-PAGE), matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF-MS) 와 bioinformatics 방법으로 아스코천린을 처리한 mouse macrophage Raw264.6 세포의 프로테인을 분석하였다. 그 결과 mouse macrophage Raw264.7 세포에 아스코천린 처리시 Calreticulin이 4배 감소, β-actin도 4배 감소하고 vimentin이 1.5배 감소함을 확인 할 수 있었다. 그러나 rabaptin 아스코천린 처리에 의해 3배 증가함을 확인 할 수 있었다. 이러한 단백질 발현을 RT-PCR을 수행하여 결과에 대해 재확인 하였으며, 프로테인의 간직을 얻을 수 있었다.

따라서 본 연구를 통해 LPS 처리에 의해 활성화된 mouse macrophage RAW264.7 세포에 ASC를 처리한 후 이차원 전기영동법을 이용하여, 단백질의 발현 변화 및 양상을 규명하고 단백질 지도를 확립하였으며, RAW264.7 세포를 이용한 면역세포 모란에서 ASC의 항암증 작용을 중심으로 생리활

성 조절기능을 확인 할 수 있었다. 향후 분자 기능 조절 연구

과 전 dissect 연구를 통해 ASC의 생리활성 조절 기능을 규명

한다면 ASC는 항암증 및 항암활성을 갖는 약물로 개발될 것

으로 기대된다.

감사의 글

이 연구는 2006년도 태구가톨릭대학교 의과학연구소 연구

비의 지원으로 수행되었습니다.

References


