Seismic Amplitude and Frequency Characteristics of Gas hydrate Bearing Geologic Model

가스 하이드레이트 지층 모델의 탄성파 진폭 및 주파수 특성

  • Shin, Sung-Ryul (Division of Ocean Development Engineering, Korea Maritime University) ;
  • Lee, Sang-Cheol (Division of Ocean Development Engineering, Korea Maritime University) ;
  • Park, Keun-Pil (Division of Petroleum and Marine Resources, Korean Institute of Geology and Mining) ;
  • Lee, Ho-Young (Division of Petroleum and Marine Resources, Korean Institute of Geology and Mining) ;
  • Yoo, Dong-Geun (Division of Petroleum and Marine Resources, Korean Institute of Geology and Mining) ;
  • Kim, Young-Jun (Division of Petroleum and Marine Resources, Korean Institute of Geology and Mining)
  • 신성렬 (한국해양대학교 해양개발공학부) ;
  • 이상철 (한국해양대학교 해양개발공학부) ;
  • 박근필 (한국지질자원연구원 석유해저자원연구부) ;
  • 이호영 (한국지질자원연구원 석유해저자원연구부) ;
  • 유동근 (한국지질자원연구원 석유해저자원연구부) ;
  • 김영준 (한국지질자원연구원 석유해저자원연구부)
  • Published : 2008.05.31


In gas hydrate survey, seismic amplitude and frequency characteristics play a very important role in determining whether gas hydrate exists. According to the variation of source frequency and scatterer size, we study seismic amplitude characteristics using elastic modeling applied at staggered grids. Generally speaking, scattering occurs in proportion to the square of source frequency and the scatterer volume, which has an effect on seismic amplitude. The higher source frequency is, the more scattering occurs in gas hydrate bearing zone. Therefore, BSR is hardly observed in high frequencies. On the other side, amplitude blanking zone and BSR is clearly observed in lower frequencies although the resolution is poor as a whole. Seismic reflections traveling through free-gas layer below gas hydrate bearing zone decay so severely a high frequency component that a low frequency term is dominant. Amplitude anomaly of BSR result from high acoustic impedance contrast due to free-gas, which is a very crucial factor to estimate gas hydrate bearing zone. Seismic frequency analysis is carried out using wavelet transform method that frequency component could be decomposed with time variation. In application of wavelet transform to the seismic physical experiments data, we can observe that reflections traveling through air layer, which corresponds to the free-gas layer, decay a high frequency component.


  1. 신성렬, 신창수, 서정희, 1997, Staggered를 이용한 유한차분법 탄성파 모델링, 한국자원공학회지, 34, 168-174
  2. 신성렬, 여은민, 김찬수, 박근필, 이호영, 김영준, 2006a, 수치 모델링 기술을 이용한 심해 가스 하이드레이트의 탄성파 특성 연구, 물리탐사, 9, 139-147
  3. 신성렬, 여은민, 김찬수, 박근필, 이호영, 김영준, 2006b, 3차원 탄성파탐사 축소모형실험을 이용한 가스 하이드레이트의 지 구물리학적 특성 연구, 한국지구시스템공학회지, 43, 181-193
  4. 양승진, 서태공, 유해수, 장재경, 2000, 하이드레이트 층에서의 탄성파 AVO 특성 연구, 한국자원공학회지, 37, 213-223
  5. 장성형, 서상용, 정부흥, 류병재, 1999, Geobit를 이용한 가스 하 이드레이트 탐사자료 처리, 물리탐사, 2, 184-190
  6. 장성형, 서상용, 류병재, 2005, 가스 하이드레이트 탄성파 자료 복소분석 해석, 한국지구시스템공학회지, 42, 180-190
  7. 장영수, 김진호, 정현조, 남영현, 1999, 시간 및 주파수 영역에서 의 신호처리 기술에 의한 초음파 속도와 감쇠의 측정, 비파괴검사학회지, 19, 118-128
  8. 허대기, 2005, 가스 하이드레이트 기술개발 현황, 한국지구시스템공학회지, 42, 206-213
  9. Castagna, J. P., Sun, S., and Siegfried R. W., 2003, Instantaneous spectral analysis: Detection of low-frequency shadows associated with hydrocarbons, The Leading Edge, 22, 120-127
  10. Ecker, C., Dvorkin J., and Nur, A., 1998, Sediments with gas hydrates: Internal structure from seismic AVO, Geophysics, 63, 1659-1669
  11. Hyndman, R. D., and Spencer, G. D., 1992, A seismic study of methane hydrate marine bottom simulating reflectors, J. Geophy. Res., 97, 6683-6698
  12. Iverson, W. P., 1987, Combining attenuation by Q and spherical divergence, Geophysics, 52, 740-744
  13. Kulenkampff, J., and Spangenberg, E., 2005, Physical properties of cores from the JAPEX/JNOC/GSC et al. Mallik 5L-38 gas hydrate production research well under simulated in situ conditions using the field laboratory experimental core analysis system (FLECAS), in S. R. Dallimore and T. S. Collett, eds., Scientific results from Mallik 2002 gas hydrate production research well program, Mackenzie delta, Northwest Territories, Canada: Geological Survey of Canada, Bulletin 585
  14. Kvenvolden, K. A., and Barnard, L. A., 1983, Gas hydrate of the Blake Ridge Outer Ridge, Site 533, Deep Sea Drilling Project Leg 76, In Sheridan R. E. and Gradstein F. W. et al. eds., Initial Report, DSDP 76, U.S Government Printing Office, Washington, D.C., 353-365
  15. Lavender, A. R., 1988, Fourth-order finite-difference P-SV seismograms, Geophysics, 53, 1425-1436
  16. Lee, M. W., and Collett T. S., 2001, Elastic properties of gas hydrate-bearing sediments, Geophysics, 66, 763-771
  17. Lee, M. W., 2002, Biot-Gassmann theory for velocities of gas hydrate-bearing sediments, Geophysics, 67, 1711-1719
  18. Lu, S., and McMechan G. A., 2002, Estimation of gas hydrate and free gas saturation, concentration, and distribution from seismic data, Geophysics, 67, 582-593
  19. Lu, S., and McMechan G. A., 2004, Elastic impedance inversion of multichannel seismic data from unconsolidated sediments containing gas hydrate and free gas, Geophysics, 69, 164-179
  20. Makogon, Y. F., 1997, Hydrate of hydrocarbons, PenWell Publ. Tulsa, Oklahoma, US., 482
  21. Officer, C. B., 1958, Introduction to the theory of sound transmission with application to the ocean, Mcgraw-Hill Book Co
  22. Prasad, L. and Iyengar, S. S., 1997, Wavelet analysis with applications to image processing, CRC Press, 101-139
  23. Shin, C., 1995, Sponge boundary condition for frequencydomain modeling, Geophysics, 60, 1870-1874
  24. Tobback, T., Steeghs, P., Drijkoningen, G. G., and Fokkema, T. J., 1996, Decomposition of seismic signals via timefrequency representations, Proceedings of the 66th SEG Annual Meeting, Denver, Colorado, USA
  25. Virieux, J., 1986, P-SV wave propagation in heterogeous media: Velocity-stress finite difference method, Geophysics, 51, 889-901
  26. Zillmer, M., 2006, A method for determining gas-hydrate or free-gas saturation of porous media from seismic measurements, Geophysics, 71, 21-32