Antifungal Activity of Bacillus vallismortis 1A against Phytopathogen

식물병원균에 대한 Bacillus vallismortis 1A 균주의 항진균 활성

  • Lee, Mi-Hye (Dept.of Technical Support, Yeojugun Agricultural Technology Center) ;
  • Kim, Soo-Jin (National Agrobiodiversity Center, National Academy of Agricultural Science, Rural Development Administration) ;
  • Lee, Chang-Muk (Dept. of Agriculrural Bio-resources, National Academy of Agricultural Science, Rural Development Administration) ;
  • Jang, Jae-Seon (Dept. of Food and Nutrition, Gachon University of Medicine and Science) ;
  • Chang, Hai-Joong (Dept.of Technical Support, Yeojugun Agricultural Technology Center) ;
  • Park, Min-Seon (Dept.of Biochemistry and Molecular Biology, Ajou University School of Medicine) ;
  • Koo, Bon-Sung (Dept. of Korean Food Research for Globalization, National Academy of Agricultural Science, Rural Development Administration) ;
  • Yoon, Sang-Hong (Dept. of Agriculrural Bio-resources, National Academy of Agricultural Science, Rural Development Administration) ;
  • Yeo, Yun-Soo (National Agrobiodiversity Center, National Academy of Agricultural Science, Rural Development Administration)
  • 이미혜 (여주군 농업기술센터 기술 지원과) ;
  • 김수진 (국립농업과학원 농업유전자원센타) ;
  • 이창묵 (국립농업과학원 농업생명자원부) ;
  • 장재선 (가천의과학대학교 식품영양학과) ;
  • 장해중 (여주군 농업기술센터 기술 지원과) ;
  • 박민선 (아주대학교 생화학교실) ;
  • 구본성 (국립농업과학원 한식세계화연구단) ;
  • 윤상홍 (국립농업과학원 농업생명자원부) ;
  • 여윤수 (국립농업과학원 농업유전자원센타)
  • Received : 2008.09.19
  • Accepted : 2008.10.14
  • Published : 2008.10.30

Abstract

In order to isolate novel oligotrophic bacteria exhibiting antifungal activities, soils were collected from pepper-cultivated fields of Yeongyang, Jecheon, Nonsan, Eumsong and Goesan area in Korea. From soils in pepper cultivated area, a total of 9,354 strains were isolated as oligotrophic bacteria by the R2A dilution method. Among 9,354 oligotrohic bacteria candidates, 1A strain was selected by screening against Phytophthora capsici causing phytophthora blight of hot pepper in the greenhouse and field. The strain was identified as Bacillus vallismortis based on its 16S rDNA sequence and key characteristics as compared with those of authentic cultures of B. vallismortis(KACC 12149) and B. mojavensis(KACC 12096). The strain showed broad spectrum of antibiotic activity in vitro test, as revealed in its strong inhibitory activity to the genera Phytophthora, Collectotrichum, Botrytis and Fusarium, but not to Rhizoctonia and Magnaporthe. In pot experiments, infection rate of hot pepper in the non-treated pots was about 89%, while it was only 29% in the pots treated with 1A strain. The result indicated B. vallismortis 1A is a potential biocontrol agent for phytophthora blight of hot pepper

Keywords

Biological control;Oligotrophic bacteria;Phytophthora blight

Acknowledgement

Supported by : 농업생명공학연구원

References

  1. Grau, A., C. Juan, J. C. Gomez-Fernandez, F. Peypoux, and A. Ortiz. 2001. Aggregational behavior of aqueous dispersions of the antifungal lipopeptide iturin A. Peptides. 22:1-5. https://doi.org/10.1016/S0196-9781(00)00350-8
  2. Jung, H, K., and S. D. Kim. 2003. Purification and characterization of an antifungal antibiotic from Bacillus megaterium KL39, a biocontrol agent of red -pepper Phytophthora blight disease. Kor. J. Appl. Microbiol. Biotechnol. 31:235-241.
  3. Phister, T. G., D. J. O'Sullivan, and L. L. McKay. 2004. Identification of bacilysin, chlorotetaine, and iturin A produced by Bacillus sp. strain CS93 isolated from Pozol, a Mexican fermented maize dough. Appl. Environ. Microbiol. 70:631-634. https://doi.org/10.1128/AEM.70.1.631-634.2004
  4. Roongsawang, T., T. Kameyama, M. Haruki, and M. Morikawa. 2002. Isolation and characterization of a halotolerant Bacillus subtilis BBK-1 which produces three kinds of lipopeptides: bacillomycin L, plipastatin, and surfactin. Extremophiles. 6:499-506. https://doi.org/10.1007/s00792-002-0287-2
  5. Whang, K., and T. Hattori. 1988. Oligotrophic bacteria in rendzina a forest soil. Antonie van Leewenhoke. 54:19-36. https://doi.org/10.1007/BF00393955
  6. Lee, K.S. 1997. Evaluation on the effects of pesticide residues to agroecosystem in Korea. Kor. J. Environ. Agric. 16:80-93.
  7. Akihiro, O., A Takashi, and S. Makoto. 1992. Production of antifungal antibiotic, iturin in a solid state fermentation by Bacillus subtilis NB22 using wheat bran as a substrate. Biotechnol. Lett. 14:817-821. https://doi.org/10.1007/BF01029145
  8. Yoo. J. K., K. H. Ryu, J. H. Kwon, and S. S. Lee. 1998. Fungicidal?activity of oriental medicinal plant extracts against plant pathogenic fungi. Agric. Chem. Biothechnol. 41:600-604.
  9. Hiraoka. H. O., Asaka, T. Ano, and M. Shoda. 1992. Characterization of Bacillus subtilis RB14, Coproducer of peptide antibiotics iturin A and surfactin. J. Gen. Appl. Microbiol. 38:635-640. https://doi.org/10.2323/jgam.38.635
  10. Ishida, Y., and H. Kadota. 1981. Growth patterns and substrate requirements of naturally occurring obligate oligotrophs. Microbiol. Ecol. 7:123-130. https://doi.org/10.1007/BF02032494
  11. Spadaro, D., and M. Gullino. 2005. Improving the efficacy of biocontrol agents against soilborne pathogens. Crop Prot. 24:601- 613. https://doi.org/10.1016/j.cropro.2004.11.003
  12. Nikitin, D.I., and K.V. Chumakov. 1985. The functional of role of oligotrophic microorganisms. In V.Jensen(ed.), Microbial communi ties in soil. FEMS symposium. 33:177-189.
  13. Zhu, H., F. Qu, and L. Zhu. 1993. Isolation of genomic DNAs from plants, fungi and bacteria using benzyl chloride. Nucleic Acids Res. 21:5279-5280. https://doi.org/10.1093/nar/21.22.5279
  14. Alexandra, K., and X. H. Chen. 2004. Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J. Bacteriol. 184:1084-1096.
  15. Wang, J., J. Liu, X. Wang, J. Yao, and Z. Yu. 2004. Application of electrospray ionization mass spectrometry in rapid typing of fengycin homologues produced by Bacillus subtilis. Lett. Appl. Microbiol. 39:98-102. https://doi.org/10.1111/j.1472-765X.2004.01547.x
  16. Alison J. V., W. K. Roberts, and C. P. Selityennikoff. 1991. A new family of plant antifungal proteins. Mol. Plant-Microbe Interact. 4:315-323. https://doi.org/10.1094/MPMI-4-315
  17. Holt, J. G., N. R. Krieg, P. H. A. Sneath, J.T. Staley, and S. T. Williams. 1994. Bergey's Manual of Systematic Bacteriology. 9th. Williams & Wilkins, U.S.A
  18. Saitou, N., and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425.
  19. Ohta, H., and T. Hattori. 1980. Bacteria sensitive to nutrient broth medium in terrestrial environments. Soil Sci. Plant Nutr. 26:99-107. https://doi.org/10.1080/00380768.1980.10433216
  20. Kim, S. J., M. Y. Kim, B. S. Koo, S. H. Yoon, Y. S. Yeo, I. C. Park, Y. J. Kim, J. W. Lee, and K. S. Whang. 2005. Isolation and phylogenetic characterization of chitinase producing oligotrophic bacteria. Kor. J. Microbiol. 41: 293-299.
  21. Vanittanakam, N., and W. Loeffler. 1986. Fengycin ? a novel antifungal lipopeptide antibiotics produced by Bacillus subtilis F29-3. J. Antibiotics (Tokyo) 39:888-901. https://doi.org/10.7164/antibiotics.39.888
  22. Mahaffe,W.F., and P. A. Backman. 1993. Effects of seeds factors on spermosphere and rhizosphere colonization of cotton by Bacillus subtilis GB03. Phytochemistry. 83:1120-1125.
  23. Tsuge, K., T., Ano, and M. Shoda. 1996. Isolation of a gene essential for biosynthesis of the lipopeptide antibiotics plipastatin B1 and surfactin in Bacillus subtilis YM8. Arch. Microbiol. 165:243-251. https://doi.org/10.1007/s002030050322