Preparation and Properties of Cellulose Diacetate/$CaCO_3$ Composite

Cellulose Diacetate/$CaCO_3$ 복합체의 제조 및 물성

  • Lim, Hwan-Kyu (School of Applied Chemistry, Sungkyunkwan University) ;
  • Kye, Hyoung-San (Department of Design & Materials, Mokwon University) ;
  • Won, Sung-Ho (School of Applied Chemistry, Sungkyunkwan University) ;
  • Nam, Jae-Do (School of Applied Chemistry, Sungkyunkwan University) ;
  • Lee, Young-Kwan (School of Applied Chemistry, Sungkyunkwan University)
  • 임환규 (성균관대학교 응용화학부) ;
  • 계형산 (목원대학교 디자인소재공학과) ;
  • 원성호 (성균관대학교 응용화학부) ;
  • 남재도 (성균관대학교 응용화학부) ;
  • 이영관 (성균관대학교 응용화학부)
  • Published : 2008.03.31

Abstract

Cellulose diacetate (CDA) and calcium carbonate ($CaCO_3$) biodegradable composites were prepared by melt mixing in a twin screw extruder and their physical properties were examined. In the melt processing, triacetine and epoxidized soybean oil were added to the composites as a plasticizer and lubricant, respectively. The optimal conditions for the preparation of the biodegradable composites were determined. Acetic acids ($CH_3COOH$) were made by pyrolysis acetyl group ($-OC (O)CH_3$) of CDA and TA in melt processing. Increasing the amount of $CaCO_3$ in the composites resulted in further enhancement of the $CH_3COOH$ absorption effects. The tensile strength and elongation were decreased, and Young's modulus and $T_g$ value increased with increasing amount of $CaCO_3$.

References

  1. J. J. Kester and O. R. Fennema, Food Technology, 40, 47 (1986)
  2. Y. J. Kim, C. H. Shin, S. I. Lee, S. H. Jang, B. S. Kim, and B. Y. Shin, J. Korean Ind. Eng. Chem., 11, 276 (2000)
  3. L. Y. Mwaikambo and M. P. Ansell, Angew. Makromol. Chem., 272, 108 (1999) https://doi.org/10.1002/(SICI)1522-9505(19991201)272:1<108::AID-APMC108>3.0.CO;2-9
  4. X. Lu, M. Q. Zhang, M. Z. Rong, G. Shi, G. C. Yang, and H. M. Zeng, Adv. Compos. Lett., 8, 231 (1999)
  5. D. N. S. Hon and M. S. L. Josefina, J. Polym. Sci.; Part A: Polym. Chem., 27, 4143 (1989) https://doi.org/10.1002/pola.1989.080271221
  6. D. N. S. Hon and N. J. Ou, J. Polym. Sci.; Part A: Polym. Chem., 27, 2457 (1989) https://doi.org/10.1002/pola.1989.080270725
  7. S. H. Lee, S. Y. Lee, J. D. Nam, and Y. K. Lee, Polymer (Korea), 30, 70 (2006)
  8. M. A. Frohoff-Hulsmann, N. C. Lippold, and K. W. McGinity, Euro. J. Pharma. Biopharma., 48, 67 (1999) https://doi.org/10.1016/S0939-6411(99)00023-5
  9. S. R. Bechard, L. Levy, and S. D. Clas, Inter. J. Pharma., 114, 205 (1995) https://doi.org/10.1016/0378-5173(94)00239-2
  10. M. Sumita, T. Shizuma, K. Miyasaka, and K. Ishikawa, J. Macromol. Sci. Phys., 22, 601 (1983) https://doi.org/10.1080/00222348308224779
  11. M. Sumita, T. Tsukurmo, K. Miyasaka, and K. Ishikawa, J. Mater. Sci., 18, 1758 (1983) https://doi.org/10.1007/BF00542072
  12. H. Bala, W. Fu, J. Zhao, X. Ding, Y. Jing, K. Yu, and Z. Wang, Colloids Surf., 252, 129 (2005) https://doi.org/10.1016/j.colsurfa.2004.10.064
  13. Z. Jia and Z. Liu, J. Membrane Sci., 209, 153 (2002) https://doi.org/10.1016/S0376-7388(02)00326-5
  14. R. Hyppola, I. Husson, and F. Sundholm, Inter. J. Pharma., 133, 161 (1996) https://doi.org/10.1016/0378-5173(96)04436-5
  15. S. Y. Lee, S. K. Lee, H. K. Lim, H. S. Kye, and Y. K. Lee, Polymer(Korea), 30, 532 (2006)
  16. P. W. Law, A. Longdon, and G. G. Willins, Marcromol. Symp., 208, 293 (2004)
  17. Y. Xiong, G. Chen, and S. Guo, J. Appl. Polym. Sci., 102, 1084 (2006) https://doi.org/10.1002/app.24262
  18. A. Lazzeri, Y. S. Thio, and R. E. Cohen, J. Appl. Polym. Sci., 91, 925 (2004) https://doi.org/10.1002/app.13268
  19. C. H. Chen, C. C. Teng, S. F. Su, W. C. Wu, and C. H. Yang, J. Polym. Sci., 44, 451 (2006) https://doi.org/10.1002/polb.20721
  20. H. Wang, X. Sun, and P. Seib, J. Appl. Polym. Sci., 84, 1259 (2002)