Noise Band Elemination of Hyperion Image using Fractal Dimension and Continuum Removal Method

프랙탈 차원 및 Continuum Removal 기법을 이용한 Hyperion 영상의 노이즈 밴드 제거

  • Chang, An-Jin (Department of Civil & Environmental Engineering, Seoul National University) ;
  • Kim, Yong-Il (Department of Civil & Environmental Engineering, Seoul National University)
  • 장안진 (서울대학교 공과대학 건설환경공학부) ;
  • 김용일 (서울대학교 공과대학 건설환경공학부)
  • Published : 2008.04.30


Hyperspectral imaging is used in a wide variety of research since the image is obtained with a wider wavelength range and more bands than multispectral imaging. However, there are limitations, namely that each band has a shorter wavelength range, the computation cost is increased in the case of numerous bands, and a high correlation between each band and noise bands exists. The previous analysis method does not produce ideal results due to these limitations. Therefore, in the case of using the hyperspectral image, image analysis after eliminating noise bands is more accurate and efficient. In this study, noise band elimination of the hyperspectral image preprocessing is highlighted, and we use fractal dimension for noise band elimination. The Triangular Prism Method is used, being the typical fractal dimension method of the curved surface. The fractal dimension of each band is calculated. We then apply the Continuum Removal method to normalize. A total of 35 bands are estimated by noise band with a threshold value that is obtained empirically. The hyperion hyperstpectral image collected on the EO-1 satellite is used in this study. The result delineates that noise bands of the hyperion image are able to be eliminated with the fractal dimension and Continuum Removal method.


  1. 한동엽, 김대성, 김용일, 2006, 극단화소를 이용한 Hyperion 데이터의 노이즈 밴드 제거, 대한원 격탐사학회지, 22(4): 275-284.
  2. Datt, B., T. R. McVicar, T. G. V. Niel, D. L. B. Jupp, and J. S. Pearlman, 2003, Preprocessing EO-1 Hyperion Hyperspectral Data to Support the Application of Agricultural Indexes, IEEE Transactions on Geoscience and Remote Sensing, 41(6): 1246-1259.
  3. Frank, M. and M. Canty, 2003, Unsupervised Change Detection for Hyperspectral Images, JPL Publication, 8th publication.
  4. Jaggi, S., Dale A. Quattroch, and Nina Siu-Ngan Lam, 1993, Implementation and Operation of three Fractal measurement algorithms for analysis of remote-sensing data, Computers & Geosciences, 19(6): 745-767.
  5. Nielsen, A. A. and M. J. Canty, 2005, Multi- and Hyper-spectral Remote Sensing Change Detection with Generalized Difference Images by the IR-MAD Method, International Workshop on the Analysis fo Multi- Temporal Remote Sensing Images, IEEE, Mississippi, USA, pp. 169-173.
  6. Yoon, Y. and Y. Kim, 2007, Application of Hyperion Hyperspectral Remote Sensing Data for Wildfire Fuel Mapping, Korean Journal of Remote Sensing, 23(1): 21-32.
  7. 김용일, 서병준, 구본철, 2000, 위성영상의 해상력에 따른 지리정보의 판독 - 판독가능성과 프랙탈 차원을 중심으로, 지형공간정보학회지, 8(2): 171-182.
  8. 한동엽, 조영욱, 김용일, 이용웅, 2003, Hyperion 영상 의 분류를 위한 밴드 추출, 대한원격탐사학회지, 19(2): 171-179.
  9. 김대성, 김용일, 어양담, 2007, 변화 탐지를 위한 Hyperion 초분광 영상의 자동 기하보정과 밴드 선택에 관한 연구, 한국측량학회지, 25(5): 383-392.
  10. Quattrochi, D. A. and Michael F. Goodchild, 1997, Scale in Remote Sensing and GIS, CRC Press.
  11. Landgrebe, D. A., 2003, Signal Theory Methods in Multispectral Remote Sensing, Wiley- Interscience, NJ, USA.
  12. 장안진, 김용일, 2008, 프랙탈 차원을 이용한 Hyperion 초분광 영상의 자동 노이즈 밴드 제거, 대한원격탐사학회 춘계학술대회, 서울, March 21: 219- 223.
  13. 장안진, 최재완, 유기윤, 김용일, 2006, 프랙탈 분석을 이용한 Hyperion 영상의 밴드 추출, 2006, 한국공간정보시스템학회 추계학술대회, 서울, November 16: 241-246.
  14. Huang, R. M. He, 2005, Band Selection Based on Feature Weighting for Classification of Hyperspectral Data, IEEE Geoscience and Remote Sensing Letters, Vol. 2, No. 2, pp. 156-159.
  15. Goodenough, D. G., A. Dyk, K. O. Niemann, J. S. Pearlman, H. Chen, T. Han, M. Murdoch, and C. West, 2003, Processing Hyperion and ALI for Forest Classification, IEEE Transactions on Geoscience and Remote Sensing, IEEE, 41(6): 1321-1331.
  16. 김선화, 이규성, 마정림, 국민정, 2005, 초분광 원격탐사의 특성, 처리기법 및 활용 현황, 대한원격탐사학회지, 21(4): 341-369.
  17. Bajcsy, P. and P. Groves, 2004, Methodology for Hyperspectral Band Selection, Photogrammetric Engineering & Remote Sensing, 70(7): 793- 802.