Effects of Butachlor on Growth of Four Freshwater Algae

Butachlor의 4종 담수조류(freshwater algae)에 대한 생장영향

  • Park, Yeon-Ki (Pesticide Safety Division, National Institute of Agricultural Science and Technology) ;
  • Bae, Chul-Han (Agricultural Research Center, Hankooksamgong Co., Ltd.) ;
  • Kim, Byung-Seok (Pesticide Safety Division, National Institute of Agricultural Science and Technology) ;
  • Park, Kyung-Hoon (Pesticide Safety Division, National Institute of Agricultural Science and Technology) ;
  • Lee, Jea-Bong (Pesticide Safety Division, National Institute of Agricultural Science and Technology) ;
  • Shin, Jin-Sup (Pesticide Safety Division, National Institute of Agricultural Science and Technology) ;
  • Hong, Soon-Sung (Pesticide Safety Division, National Institute of Agricultural Science and Technology) ;
  • Cho, Kyung-Won (Agricultural Research Center, Hankooksamgong Co., Ltd.) ;
  • Lee, Kyu-Seung (Chungnam National University) ;
  • Lee, Jung-Ho (Daegu University)
  • 박연기 (농업과학기술원 농산물안전성부) ;
  • 배철한 (한국삼공(주) 농업연구소) ;
  • 김병석 (농업과학기술원 농산물안전성부) ;
  • 박경훈 (농업과학기술원 농산물안전성부) ;
  • 이제봉 (농업과학기술원 농산물안전성부) ;
  • 신진섭 (농업과학기술원 농산물안전성부) ;
  • 홍순성 (농업과학기술원 농산물안전성부) ;
  • 조경원 (한국삼공(주) 농업연구소) ;
  • 이규승 (충남대학교 농업생명과학대학) ;
  • 이정호 (대구대학교 사범대학)
  • Published : 2008.03.31

Abstract

Algae are vital in the primary production of the aquatic ecosystem, having been considered as good indicators of the bioactivity of pesticides. Algae have short life cycle, respond quickly to environmental change and their diversity and density can indicate the quality of their habitat. The purpose of the study was to determine the growth inhibition effects of butachlor (Tech. 93.4%) and $K_2Cr_2O_7$ (Tech. 99.5%) in Selenastrum capriconutum, Scenedesmus subspicatus, Chlorella vulgaris and Nitzschia palea during and exposure period of 72 hours. The toxicological responses of S. capriconutum, S. subspicatus, C. vulgaris and N. Palea to butachlor, expressed in individual $ErC_{50}$ values were 0.0022, 0.019, 8.67 and $4.94\;mg\;L^{-1}$, respectively. NOEC values were 0.0008, 0.0016, 5.34 and $2.92\;mg\;L^{-1}$, respectively. S. capriconutum was more sensitive than the other algae species. The toxicological responses of S. capriconutum, S. subspicatus, C. vulgaris and N. palea to $K_2Cr_2O_7$ expressed as $ErC_{50}$ values were 0.91, 0.78, 0.85 and $0.57\;mg\;L^{-1}$, respectively. NOEC values were 0.2, 0.2, 0.2 and $0.18\;mg\;L^{-1}$, respectively. Growth inhibition of S. capriconutum, S. subspicatus, C. vulgaris and N. palea from PEC of butachlor were 100, 75, 0 and 0%, respectively.

Keywords

butachlor;green algae;diatom;growth inhibition

References

  1. Arensberg, P., V. H. Hemmlngsen and N. Nyholm (1995) A Miniscale algal toxicity test. Chemosphere 40(11):2103-2115
  2. Bozena, S. S., T. Danute and M. Barbara (1998) Microalgal ecotoxicity test with 3,4-dichloroaniline. Chemosphere 37: 2975-2982 https://doi.org/10.1016/S0045-6535(98)00338-5
  3. Ma, J., L. Xu, S. Wang, R. Zheng, S. Jin, S. Huang and Y. Huang (2002) Toxicity of 40 herbicides to the green alga chlorella vulgaris. Ecotoxicology and Environmental Safety 51:128-132 https://doi.org/10.1006/eesa.2001.2113
  4. Sabater, C., A. Cuesta, R. Carrasco (2002) Effects of bensulfuron- methyl and cinosulfuron growth of four freshwater species of phytoplankton. Chemosphere 46:953-960 https://doi.org/10.1016/S0045-6535(01)00179-5
  5. Wong, S. L. (1985) Algal assay evaluation of trace contaminants in surface water using the nonionic surfactant, triton x-100. Aquatic Toxicology 6:115-131 https://doi.org/10.1016/0166-445X(85)90011-6
  6. 한국작물보호협회 (2007) 농약연보
  7. Leboulanger, C., F. Rimet, M. H. de Lacotte and A. Berard (2001) Effects of atrazine and nicosulfuron on freshwater microalgae. Environment International 26:131-135 https://doi.org/10.1016/S0160-4120(00)00100-8
  8. Seckbach, J. (ed, 2007) Algae and cyanobacteria in extreme environments. Springer 141-172
  9. Slooff, W., J. H. Canton and J. L. M. Hermens (1983) Comparison of the susceptibility of 22 freshwater species to 15 chemical compounds. Auatic Toxicology 4:113-128 https://doi.org/10.1016/0166-445X(83)90049-8
  10. Rioboo, C., O. Gonzalez, C. Herrero, A. Cid (2002) Physiological response of freshwater microalga (Chlorella vulgaris) to triazine and phenylurea herbicides. Aquatic toxicology 59:225-235 https://doi.org/10.1016/S0166-445X(01)00255-7
  11. Shizhong, T., L. Zan, W. Jianhua and Z. Yongyuan (1997) Growth of Chlorella vulgaris in cultures with low concentration dimethoate as source of phosphorus. Chemosphere 35(11): 2713-2718 https://doi.org/10.1016/S0045-6535(97)00329-9
  12. Ernesto, M. R. and S. S. S. Sarma and S. Nandimi (2002) Combined effects of algal (Chlorella vulgaris) density and ammonia concentration on the population dynamics of Ceriodaphnia dubia and Monia macrocopa. Ecotoxicology and environmental safety 51:216-222 https://doi.org/10.1006/eesa.2001.2128
  13. Okamura, H., M. Piao, I. Aoyama, M. Sudo, T. Okubo, M. Nakanura (2002) Algal growth inhibition by river water pollutants in the agricultural area around Lake Biwa, Japan. Environmental Pollution 117:411-419 https://doi.org/10.1016/S0269-7491(01)00196-8
  14. Lewis, M. A. (1995) Use of freshwater plants for phytotoxicity testing : a review. Environmental pollution 87:319-336 https://doi.org/10.1016/0269-7491(94)P4164-J
  15. Wang, W. and K. Freemark (1995) The use of plants for envrionmental monitoring and assessment. Ecotoxicology and environmental safety 30:289-301 https://doi.org/10.1006/eesa.1995.1033
  16. Renata, R. P. and M. Blahoslav (1999) Selection and sensitivity comparisons of algal species for toxicity testing. Chemosphere 38(14):3329-3338 https://doi.org/10.1016/S0045-6535(98)00566-9
  17. 농촌진흥청 (2007) 농약관리법령 고시훈령집
  18. Ferraz, D. G. B., C. Sabater, J. M. Carrasco (2004) Effects of propanil, tebufenozide and mefenacet on growth of four freshwater species of phytoplankton: a microplate bioassay. Chemosphere 56:315-320 https://doi.org/10.1016/j.chemosphere.2004.01.038
  19. Kasai, F. (1999) Shifts in herbicide tolerance in paddy field periphyton following herbicide application. Chemosphere 38(4):919-931 https://doi.org/10.1016/S0045-6535(98)00221-5
  20. Sabater, C. and J. M. Carrasco (2001) Effects of pyridaphention on growth of five freshwater species of phytoplankton. Chemosphere 44:1775-1781 https://doi.org/10.1016/S0045-6535(00)00575-0
  21. 한국작물보호협회 (2007) 농약사용지침서
  22. Kasai, F. and S. Hatakeyama (1993) Herbicide susceptibility in two green algae, Chlorella vulgaris and Selenastrum capricornutum. Chemosphere 27(5):899-904 https://doi.org/10.1016/0045-6535(93)90019-2
  23. OECD (2006) Alga, growth inhibition test. OECD guideline for testing of chemicals 201
  24. EPA (1995) Algal toxicity. Ecological effects test guidelines OPPTS 850.5400
  25. McCormick, P. V. and J. Cairns Jr (1994) Algae as indicators of environmental change. Journal of applied phycology 6 :509-526 https://doi.org/10.1007/BF02182405
  26. Perschbacher, P. W., G. M. Ludwig and N. Slaton (2002) Effects of common aerially applied rice herbicides on the plankton communities of aquaculture ponds. Aquaculture 214:241-246 https://doi.org/10.1016/S0044-8486(02)00396-4
  27. 농업과학기술원 (1998) 시험연구보고서
  28. Nyholm, N. (1989) Methods for growth inhibition toxicity tests with freshwater algae. Environmental toxicology and chemistry 8:689-703 https://doi.org/10.1897/1552-8618(1989)8[689:MFGITT]2.0.CO;2
  29. Peterson, H. G., C. Boutin, K. E. Freemark, P. A. Martin (1997) Toxicity of hexazinone and diquat to green algae, diatoms, cyanobacteria and duckweed. Aquatic Toxicology 39:111-134 https://doi.org/10.1016/S0166-445X(97)00022-2
  30. 농약연구소 (1993) 논 조류 원색도감
  31. Sabater, C. and J. M. Carrasco (1996) Effects of thiobencarb on the growth of three species of phytoplankton. Bull. Environ. Contaim. Toxicol. 56:977-984 https://doi.org/10.1007/s001289900141