Genetic Diversity among Local Populations of the Gold-spotted Pond Frog, Rana plancyi chosenica (Amphibia: Ranidae), Assessed by Mitochondrial Cytochrome b Gene and Control Region Sequences

  • Min, Mi-Sook (BK21 Program for Veterinary Science and Conservation Genome Resource Bank for Korean Wildlife(CGRB), College of Veterinary Medicine, Seoul National University) ;
  • Park, Sun-Kyung (BK21 Program for Veterinary Science and Conservation Genome Resource Bank for Korean Wildlife(CGRB), College of Veterinary Medicine, Seoul National University) ;
  • Che, Jing (Laboratory of Cellular and Molecular Evolution, Kunming Institute of Zoology, The Chinese Academy of Sciences) ;
  • Park, Dae-Sik (Department of Science Education, Kangwon National University) ;
  • Lee, Hang (BK21 Program for Veterinary Science and Conservation Genome Resource Bank for Korean Wildlife(CGRB), College of Veterinary Medicine, Seoul National University)
  • Published : 2008.03.31


The Gold-spotted pond frog, Rana plancyi chosenica, designated as a vulnerable species by IUCN Red list. This species is a typical example facing local population threats and extinction due to human activities in South Korea. A strategic conservation plan for this endangered species is urgently needed. In order to provide information for future conservation planning, accurate information on the genetic diversity and taxonomic status is needed for the establishment of conservation units for this species. In this study, we used a molecular genetic approach using the mitochondrial cytochrome b gene and control region sequences to find the genetic diversity of gold-spotted pond frogs within South Korea. We sequenced the mitochondrial DNA cytochrome b gene and control region of 77 individuals from 11 populations in South Korea, and one from Chongqing, China. A total of 15 cytochrome b gene haplotypes and 34 control region haplotypes were identified from Korean gold-spotted pond frogs. Mean sequence diversity among Korean gold-spotted pond frogs was 0.31% (0.0-0.8%) and 0.51% (0.0-1.0%), respectively. Most Korean populations had at least one unique haplotype for each locus. The Taean, Ansan and Cheongwon populations had no haplotypes shared with other populations. There was a sequence divergence between Korean and Chinese gold-spotted pond frogs (1.3% for cyt b; 2.9% for control region). Analysis of genetic distances and phylogenetic trees based on both cytochrome b and control region sequences indicate that the Korean gold-spotted pond frog are genetically differentiated from those in China.


  1. Frankham, R., J.D. Ballou and D.A. Briscoe, 2002. Introduction to Conservation Genetics. Cambridge University Press, pp. 1-640
  2. Goebel, A.M., J.M. Donnelly and M.E. Atz, 1999. PCR primers and amplification methods for 12S ribosomal DNA, the control region, cytochrome oxidase I, and cytochrome b in bufonids and other frogs, and an overview of PCR primers which have amplified DNA in amphibians successfully. Mol. Phylogenet. Evol., 11(1): 163-199
  3. Groves, P. and G.F. Shields, 1996. Phylogenetics of the Caprinae based on cytochrome b sequence. Mol. Phylogenet. Evol., 5(3): 467-477
  4. Irwin, D.M., T.D. Kocher and A.C. Wilson, 1991. Evolution of the cytochrome b gene of mammals. J. Mol. Evol., 32(2): 128-144
  5. Kang, Y.S. and I.B. Yoon, 1975. Illustrated Encyclopedia of Fauna and Flora of Korea Vol. 17. Amphibia and Reptilia. Ministry of Education, Seoul, pp. 1-191
  6. Stuart, S.N., J.S. Chanson, N.A. Cox, B.E. Young, A.S. Rodriques, D.L. Fischman and R.W. Waller, 2004. Status and trends of amphibian declines and extinctions worldwide. Science, 306(5702): 1783-1786
  7. Rozas, J., J.C. Sanchez-DelBarrio, X. Messeguer and R. Rozas, 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics, 19(18): 2496-2497
  8. Alford, R.A., P.M. Dixon and J.H. Pechmann, 2001. Ecology. Global amphibian population declines. Nature, 412(6846): 499-500
  9. Kumar, S., 1996. PHYLTEST. Version 2.0. Pennsylvania State University, University Park
  10. Takezaki, N., A. Rzhetsky and M. Nei, 1995. Phylogenetic test of the molecular clock and linearized trees. Mol. Biol. Evol., 12(5): 823-833
  11. AmphibiaWeb, 2008. Information on amphibian biology and conservation (22 Jan 2008;
  12. Thompson, J.D., T.J. Gibson, F. Plewniak, F. Jeanmougin and D.G. Higgins, 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res., 25(24): 4876-4882
  13. Houlahan, J.E., C.S. Findley, B.R. Schmidy, A.H. Meyer and S.L. Kuzmin, 2000. Quantitative evidence for global amphibian declines. Nature, 404(6779): 752-755
  14. Kim, J.B., H.Y. Lee and S.Y. Yang, 1999b. Genetic variation of the mitochondrial cytochrome b gene sequence in a Korean pond frog, Rana nigromaculata, with a report of the discordance in the genetic divergence of mtDNA and nuclear DNA. Korean J. Genet., 21: 127-134
  15. Edwards, S.V. and P. Beerli, 2000. Gene divergence, population divergence, and the variance in coalescence time in phylogeographic studies. Evolution Int. J. Org. Evolution, 54(6): 1839-1854
  16. Lee, H.I., D.E. Yang, Y.R. Kim, H. Lee, J.E. Lee, S.Y. Yang and H.Y. Lee, 1999b. Genetic variation of the mitochondrial cytochrome b sequence in Korean Rana rugosa (Amphibia; Ranidae). Korean J. Biol. Sci., 3: 89-96
  17. Avise, J.C., B.W. Bowen, T. Lamb, A.B. Meylan and E. Bermingham, 1992. Mitochondrial DNA evolution at a turtle's pace: evidence for low genetic variability and reduced microevolutionary rate in the Testudines. Mol. Biol. Evol., 9: 457-473
  18. Crandall, K.A., O.R.P. Bininda-Edmonds, G.M. Mace and R. K. Wayne, 2000. Considering evolutionary processes in conservation biology: an alternative to 'evolutionarily significant units'. Trends Ecol. Evol., 15: 290-295
  19. Kim, Y.R., D.E. Yang, H. Lee, J.E. Lee, H.I. Lee, S.Y. Yang and H.Y. Lee, 1999a. Genetic differentiation in the mitochondrial cytochrome b gene of Korean Brown Frog, Rana dybowskii (Amphibia: Ranidae). Korean J. Biol. Sci., 3: 199-205
  20. Lee, J.E., D.E. Yang, Y.R. Kim, H. Lee, H.I. Lee, S.Y. Yang and H.Y. Lee, 1999a. Genetic relationships of Rana amurensis based on mitochondrial cytochrome b gene sequence. Korean J. Biol. Sci., 3: 303-309
  21. Zhao, E.M. and K. Adler, 1993. Herpetology of China. Society for the Study of Amphibians and Reptiles, pp. 1-522
  22. Yang, S.Y., J.B. Kim, M.S. Min, J.H. Suh and Y.J. Kang, 2001. Monograph of Korea Amphibia. Academic Press. Seoul, pp. 1-187
  23. Cushman, S.A., 2006. Effects of habitat loss and fragmentation on amphibians: A review and prospectus. Biol. Conserv., 128(2): 231-240
  24. Weisrock, D.W., J.R. Macey, I.H. Ugurtas, A. Larson and T.J. Papenfuss, 2001. Molecular phylogenetics and historical biogeography among salamandrids of the 'true' salamander clade: rapid branching of numerous highly divergent lineages in Mertensiella luschani associated with the rise of Anatolia. Mol. Phylogenet. Evol., 18(3): 434-448
  25. Alford, R.A. and S.J. Richards, 1999. Global amphibian declines: a problem in applied ecology. Annu. Rev. Ecol. Syst., 30: 133-165
  26. Avise, J.C., D. Walker and G.C. Johns, 1998. Speciation durations and Pleistocene effects on vertebrate phylogeography. Proc. R. Soc. London Ser. B, 265: 1707-1712
  27. Lee, S.C., 2003. Study on in-situ and ex-situ, and restoration strategy planning for the protected wildlife anura (Rana plancyi chosenica Okada) in Korea. M. Thesis. Incheon Univ
  28. Tamura, K., J. Dudley, M. Nei and S. Kumar, 2007. MEGA 4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol., 24(8): 1596-1599

Cited by

  1. Mitochondrial DNA data unveil highly divergent populations within the genus Hynobius (Caudata: Hynobiidae) in South Korea vol.31, pp.2, 2011,
  2. Phylogeography of Korean raccoon dogs: implications of peripheral isolation of a forest mammal in East Asia vol.290, pp.3, 2013,