Bacteriocidal Effects of Ultraviolet Irradiation for Reducing Bovine Mastitis Derived from Environmental Contamination

우분뇨 유래 젖소 유방염 저감을 위한 자외선 조사 살균의 효과 규명

  • Kim, Dong-Hyeok (College of Veterinary Medicine, Gyeongsang National University) ;
  • Lim, Jung-Ju (College of Veterinary Medicine, Gyeongsang National University) ;
  • Lee, Jin-Ju (College of Veterinary Medicine, Gyeongsang National University) ;
  • Jang, Hong-Hee (College of Veterinary Medicine, Gyeongsang National University) ;
  • Jang, Dong-Il (Department of Bio-Industrial and Machinery, Chungnam National University) ;
  • Lee, Seung-Joo (Department of Bio-Industrial and Machinery, Chungnam National University) ;
  • Lee, Hu-Jang (College of Veterinary Medicine, Gyeongsang National University) ;
  • Min, Won-Gi (College of Veterinary Medicine, Gyeongsang National University) ;
  • Kwon, Sun-Hong (Department of Bio-Industrial Machinery, Pusan National University) ;
  • Kim, Sang-Hun (College of Veterinary Medicine, Chungnam National University) ;
  • Oh, Kwon-Young (Department of Agricultural Engineering, National Academy of Agriculturral Science) ;
  • Kim, Suk (College of Veterinary Medicine, Gyeongsang National University)
  • 김동혁 (경상대학교 수의과대학) ;
  • 임정주 (경상대학교 수의과대학) ;
  • 이진주 (경상대학교 수의과대학) ;
  • 장홍희 (경상대학교 수의과대학) ;
  • 장동일 (충남대학교 농과대학) ;
  • 이승주 (충남대학교 농과대학) ;
  • 이후장 (경상대학교 수의과대학) ;
  • 민원기 (경상대학교 수의과대학) ;
  • 권순홍 (부산대학교 바이오산업기계공학과) ;
  • 김상훈 (충남대학교 수의과대학) ;
  • 오권영 (국립농업과학원 농업공학부) ;
  • 김석 (경상대학교 수의과대학)
  • Published : 2008.12.31


Bovine mastitis is an important disease causing serious economic loss in dairy production and food poison in public health. The major causative agents of bovine mastitis include Escherichia coli (E. coli), Streptococcus agalactiae (S. agalactiae), Staphylococcus aureus (S. aureus). These bacteria were found in milk and environmental condition such as feces, water, soil and so on. Recently, many cases of mastitis are derived from environmental contamination of micro-organisms, which important factors for the spread of this disease in farm. Ultraviolet irradiation (UV) has been used as disinfection for waste and water in clinical and industrial facilities. Moreover the UV irradiation has been used as useful bactericidal agents to remove bacterial biofilms in environmental condition. In this study, we determined the bacterial replication in different percentage of water content (PWC) in sterilized saw dust and feces complexes from farm, and results showed that slightly decreased growth pattern of E. coli and S. agalactiae but increased growth pattern of S. aureus in various PWC (200, 400 and 600%) until 144 h incubation. In the bacteriocidal effect of UV irradiation to bacteria in saw dust and feces complex, the results showed that bacteriocidal effect was depended on the UV irradiation time, irradiation distance and PWC. Especially the antibacterial activity of UV irratiation is stronger in low PWC (50%), long time irradiation (50 sec), and short distance (5 cm) than other condition of this study. Furthermore UV irradiation with stirring showed increased the bactericidal effect compared without stirring. These results suggested that bovine mastitis causing agents may survive long time in environmental condition especially saw dust and feces complexes in farm and can cause a various disease including mastitis. Moreover, these data can be used as basis for application and development of UV disinfection to control of bovine mastitis from environmental contaminated bacteria in dairy farm.


  1. Van, Houdt R., Michiels, C. W. (2005) Role of bacterial cell surface structures in Escherichia coli biofilm formation. Res. Microbiol., 156, 626-633
  2. Zadoks, R. N., Tikofsky, L. L., Boor, K. J. (2005) Ribotyping of Streptococcus uberis from a dairy's environment, bovine feces and milk. Vet. Microbiol., 30;109(3-4), 257-65
  3. Pore, R. S., Barnett, E. A., Barnes, Jr. W. C., Walker, J.D. (1983) Prototheca ecology. Mycopathologia, 81, 49-62
  4. Hogan, J. S., Gonzalez, R. N., Harmon, R. J., Nickerson, S. C., Oliver S. P., Pankey, J. W., Smith, K. L. (1999) Laboratory Handbook on Bovine Mastitis, National Mastitis Council, Inc., Madison, Wisconsin, USA
  5. Koneman, E. W., Allen, S. D., Dowell, V. R., Sommer, H. M. (1983) The Enterobacteriaceae, in: Color Atlas and Textbook of Diagnostic Microbiology, J.B. Lippincott Company, New York, New York, USA, pp. 57-124
  6. Joe, H., K., Larry. S. (2003) Coliform mastitis. Vet. Res., 507-519
  7. Nandakumar, K., Keeler, W., Schraft, H., Leung, K. T. (2006) Visible laser and UVA radiation impact on a PNP degrading Moraxella strain and its rpoS mutant. Biotechnol. Bioeng., 94, 793-802
  8. Hamblin, M. R., Viveiros, J., Yang, C., Ahmadi, A., Ganz, R. A., Tolkoff, M. J. (2005) Helicobacter pylori accumulates photoactive porphyrins and is killed by visible light. Antimicrob. Agents Chemother., 49, 2822-2827
  9. Lodish, H., Baltimore, D., Berk, A., Zipursky, S. L., Matsudaira, P., Darnell, J. (1995) Molecular cell biology. New York, NY: Scientific American Books, Inc., p 1344
  10. Becker, W. M., Klleinsmith, L. J., Hardin, J. (2003) The world of the cell. San Francisco, CA: Benjamin Cummings, p 802
  11. Natasha, V., Werden, J. K., Kanavilli, N., Kam, T. L. (2008) The Bactericidal Effect of Ultraviolet and Visible Light on Escherichia coli. Biotechnol. Bioeng., 99(3), 550-6
  12. Mirando, W. S, Shiratsuchi, H., Tubesing, K., Toba, H., Ellner, J. J., Elmets, C. A. (1992) Ultravioletirradiated monocytes efficiently inhibit the intracellular replication of Mycobacterium avium intracellulare. J. Clin. Invest., 89(4), 1282-7
  13. Hijnen, W. A., Beerendonk, E. F., Medema, G. J. (2006) Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: a review. Water Res., 40(1), 3-22
  14. Giannini, M. S. H. (1986) Suppression of pathogenesis in cutaneous Leishmaniasis by UV radiation. Infect. Immun. 51, 838-843
  15. Watts, J. L. (1988) Etiological agents of bovine mastitis. Vet. Microbiol., 16, 41-66
  16. Leclerc, H., Mossel, D. A., Edberg, S. C., Struijk, C. B. (2001) Advances in the bacteriology of the Coliform Group: Their suitability as markers of microbial water safety. Ann. Rev. Microbiol., 55, 201-234
  17. Tallon, P., Magajna, B., Lofronco, C., Leung, K. T. (2005) Microbial indicators of faecal contamination in water: A current perspective. Water Air Soil Pollut., 166,139-166
  18. Fox, L. K., Gershman, M., Hancock, D. D., Hutton, C. T. (1991) Fomites and reservoirs of Staphylococcus aureus causing intramammary infections as determined by phage typing: the effect of milking time hygiene practices. Cornell Vet., 81, 183-193
  19. Pore, R. S, Shahan, T. A. (1988) Prototheca zopfii: natural, transient, occurrence in pigs and rats. Mycopathologia, 101, 85-8
  20. Decho, A. W. (2000) Microbial biofilms in intertidal systems: An overview. Cont. Shelf. Res., 20, 1257-1273
  21. Wilson, M. (1994) Bactericidal effect of laser light and its potential use in the treatment of plaque-related diseases. Int. Dent. J., 44, 181-189
  22. Katara, G., Hemvani, N., Chitnis, S., Chitnis, V., Chitnis, D. S. (2008) Surface disinfection by exposure to germicidal UV light. Indian J. Med. Microbiol., 26(3), 241-242

Cited by

  1. Effects of Dandelion (Taraxzcum coreanum) Supplementation on Milk Yield,Milk Compositions and Blood Characteristics in Lactating Dairy Cows vol.35, pp.3, 2015,