DOI QR코드

DOI QR Code

Genetic Polymorphisms of MYL2 and ADCYAP1R1 Genes and Their Association with Carcass Traits in Finished Pigs

비육돈의 도체형질과 MYL2, ADCYAP1R1 유전자 다형성의 상관관계

  • Han, ang-Hyun (National Institute of Subtropical Agriculture, RDA) ;
  • Shin, Kwang-Yun (National Institute of Subtropical Agriculture, RDA) ;
  • Lee, Sung-Soo (National Institute of Subtropical Agriculture, RDA) ;
  • Ko, Moon-Suck (National Institute of Subtropical Agriculture, RDA) ;
  • Seong, Pil-Nam (National Institute of Animal Science, RDA) ;
  • Kwon, Ki-Baek (Jeju Branch Office, Animal Products Grading Service) ;
  • Cho, In-Cheol (National Institute of Subtropical Agriculture, RDA)
  • 한상현 (농촌진흥청 난지농업연구소) ;
  • 신광윤 (농촌진흥청 난지농업연구소) ;
  • 이성수 (농촌진흥청 난지농업연구소) ;
  • 고문석 (농촌진흥청 난지농업연구소) ;
  • 성필남 (농촌진흥청 축산과학원) ;
  • 권기백 (축산물등급판정소 제주지역본부) ;
  • 조인철 (농촌진흥청 난지농업연구소)
  • Published : 2008.06.01

Abstract

DNA variation of MYL2 intron 5 A345G and ADCYAP1R1 intron 2 A337G were investigated for carcass trait association in finished pigs. Three genotypes(two homozygotes and their heterozygote) were found at 10.6% AA, 45.6% AG and 43.8% GG in MYL2 and 60.5% AA, 34.6% AG, and 22.2% GG for ADCYAP1R1. In finished pig population, individuals containing genotype G- of MYL2 had significantly heavier carcass weight by more than 2.4 kg and thicker backfat thickness by more than 1.3 mm than those of AA homozygous pigs(p<0.05). No significant difference was found in other traits tested in this study such as marbling score, meat color, texture, moisture and separation score(p>0.05). The ADCYAP1R1 intron 2 377GG homozygotes showed coarse texture, i.e., meat quality was inferior than those of AG and AA genotypes, and the moisture level of homozygote AA was higher than those of AG and GG genotypes(p<0.05). The other carcass traits were not significantly associated with ADCYAP1R1 genotypes(p>0.05). The genetic polymorphism of MYL2 and ADCYAP1R1 genes affected the carcass traits in finished pig population. Further studies to explain the association between genetic variations and their phenotypic effects including economic traits in pigs are required including critical mutation in both genes through molecular approaches.

Keywords

Genetic polymorphism; MYL2; ADCYAP1R1; Carcass trait; Pig

References

  1. Miyata, A., Arimura, A., Dahl, R. R., Minamino, N., Uehara, A., Jiang, L., Culler, M. D. and Coy, D. H. 1989. Isolation of a novel 38 residue- hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem. Biophys. Res. Commun. 164:567-574 https://doi.org/10.1016/0006-291X(89)91757-9
  2. Noguera, J. L., Varona, L., Gomez-Raya, L., Sánchez, A., Babot, D., Estany, J., Messer, L. A., Rothschild, M. and Pérez-Enciso, M. 2003. Estrogen receptor polymorphism in Landrace pigs and its association with litter size performance. Livest. Sci. 82:53-59 https://doi.org/10.1016/S0301-6226(03)00004-6
  3. Ovilo, C., Oliver, A., Noguera, J. L., Clop, A., Barrangan, C., Varona, L., Rodriguez, C., Toro, M., Sanchez, A., Perez-Enciso, M. and Silio, L. 2002. Test for positional candidate genes for body composition on pig chromosome 6. Genet. Sel. Evol. 34:465-479 https://doi.org/10.1186/1297-9686-34-4-465
  4. Malek, M., Dekkers, J. C., Lee, H. K., Baas, T. J., Prusa, K., Huff-Lonergan, E. and Rothschild, M. F. 2001. A molecular genome scan analysis to identify chromosomal regions influencing economic traits in the pig. II. Meat and muscle composition, Mamm. Genome. 12:637-645 https://doi.org/10.1007/s003350020019
  5. Gray, S. L., Yamaguchi, N., Vencova, P. and Sherwood, N. M. 2002. Temperature-sensitive phenotype in mice lacking pituitary adenylate cyclase-activating polypeptide. Endocrinology. 143: 3946-3954 https://doi.org/10.1210/en.2002-220401
  6. .Inagaki, N., Kuromi, H. and Seino, S. 1996. PACAP/VIP receptors in pancreatic beta-cells: their roles in insulin secretion. Ann. N.Y. Acad. Sci. 805:44-51 https://doi.org/10.1111/j.1749-6632.1996.tb17472.x
  7. Jeon, J. T., Park, E. W., Jeon, H. J. Kim, T. H., Lee, K. T. and Cheong, I. C. 2003. A large-insert porcine library with sevenfold genome coverage: a tool for positional cloning of candidate genes for major quantitative traits. Mol. Cells. 16:113-116
  8. Faerman, A. and Shani, M. 1993. The expression of the regulatory myosin light chain 2 gene during mouse embryogenesis. Development. 118: 919-929
  9. Gray, S. L., Cummings, K. J., Jirik, F. R. and Sherwood, N. M. 2001. Targeted disruption of the pituitary adeylate cyclase-activating polypeptide gene results in early postnatal death associated with dysfunction of lipid and carbohydrate metabolism. Mol. Endocrinol. 15:1739-1747 https://doi.org/10.1210/me.15.10.1739
  10. Andersson, L., Haley, C. S., Ellergren, H., Knott, S. A., Johansson, M., Andersson, K., Andersson- Eklund, L., Edfor-Lilja, I., Fredholm, M., Hansson, I., Hakansson, J. and Lundstrom, K. 1994. Genetic mapping of quantitative loci for growth and fatness in pigs. Science. 263:1771-1774 https://doi.org/10.1126/science.8134840
  11. Birren, B., Green, E. D., Klapholz, S., Myers, R. M. and Roskams, J. 1997. Genome analysis: A laboratory manual. Vol. 1 Analyzing DNA. Cold Spring Harbor Laboratory Press, New York, U.S.A., pp. 6-16
  12. Davoli, R., Fontanesi, L., Cagnazzo, M., Scotti, E., Buttazzoni, L., Yerle, M. and Russo, V. 2003. Identification of SNPs, mapping and analysis of allele frequencies in two candidate genes for meat production traits: the porcine myosin heavy chain 2B(MYH4) and the skeletal muscle myosin regulatory light chain 2(HUMMLC2B). Anim. Genet. 34:221-225 https://doi.org/10.1046/j.1365-2052.2003.00992.x
  13. Sanjay, S., Malay, K. R. and Satyapriya, S. 2003. Human fast skeletal myosin light chain 2 cDNA: isolation, tissue specific expression of the single copy gene, comparative sequence analysis of isoforms and evolutionary relationships. DNA Seq. 5:339-350
  14. Pisegna, J. R. and Wank, S. A. 1993. Molecular cloning and functional expression of the pituitary adenylate cyclase-activating polypeptide type I receptor. Proc. Nat'l. Acad. Sci. U.S.A., 90:6345-6349
  15. Sanbe, A., Fewell, J. G., Gulick, J., Osinska, H., Lorenz, J., Hall, D. G., Murray, L. A., Kimball, T. R., Witt, S. A. and Robbins, J. 1999. Abnormal cardiac structure and function in mice expressing nonphosphorylatable cardiac regulatory myosin light chain 2. J. Biol. Chem. 274:21085-21094 https://doi.org/10.1074/jbc.274.30.21085
  16. SAS. 1999. SAS/STAT software for PC. Release 8.01. SAS Institute Inc., Cary, NC, USA
  17. Scaldaferri, L., Arora, K., Lee, S. H., Catt, K. J. and Moretti, C. 1996. Expression of PACAP and its type-I receptor isoforms in the rat ovary. Mol. Cell. Endocrinol. 117:227-232 https://doi.org/10.1016/0303-7207(95)03752-7
  18. Spengler, D., Waeber, C., Pantaloni, C., Holsboer, F., Bockaert, J., Seeburg, P. H. and Journot, L. 1993. Differential signal transduction by five splice variants of the PACAP receptor. Nature. 365:170-175 https://doi.org/10.1038/365170a0
  19. Xu, D. Q., Liu, M., Xiong, Y. Z., Deng, C. Y., Jiang, S. W., Li, J. L., Zuo, B., Lei, M. G., Li, F. E. and Zheng, R. 2007. Identification of polymorphisms and association analysis with meat quality traits in the porcine KIAA1717 and HUMMLC2B genes. Livest. Sci. 106:96-101 https://doi.org/10.1016/j.livsci.2006.07.005
  20. Szczesna-Cordary, D., Guzman, G., Zhao, J., Hernandez, O., Wei, J. and Diaz-Perez, Z. 2005. The E22K mutation of myosin RLC that causes familial hypertrophic cardiomyopathy increases calcium sensitivity of force and ATPase in transgenic mice. J. Cell. Sci. 118:3675-3683 https://doi.org/10.1242/jcs.02492
  21. Kollers, S., Mote, B., Rothschild, M. F., Plastow, G. and Rocha, D. 2006. Single nucleotide polymorphism identification, linkage and radiation hybrid mapping of the porcine pituitary adenylate cyclase-activating polypeptide type I receptor gene to chromosome 18. J. Anim. Breed. Genet. 123: 414-418 https://doi.org/10.1111/j.1439-0388.2006.00621.x
  22. Roopnarine, O. 2003. Mechanical defects of muscle fibers with myosin light chain mutants that cause cardiomyopathy. Biophys. J. 84:2440-2449 https://doi.org/10.1016/S0006-3495(03)75048-6
  23. Schiaffino, S. and Reggiani, C. 1996. Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiol. Rev. 76:371-423 https://doi.org/10.1152/physrev.1996.76.2.371
  24. Szczesna, D., Ghosh, D., Li, Q., Gomes, A. V., Guzman, G., Arana, C., Zhi, G., Stull, J. T. and Potter, J. D. 2001. Familial hypertrophic cardio- myopathy mutations in the regulatory light chains of myosin affect their structure, Ca2+ binding, and phosphorylation. J. Biol. Chem. 276:7086-7092 https://doi.org/10.1074/jbc.M009823200
  25. Wang, H. L., Wang, H., Zhu, Z. M., Wang, C. F., Zhu, M. J., Mo, D. L., Yang, S. L. and Li, K. 2006. Subcellular localization, expression patterns, SNPs and association analyses of the porcine HUMMLC2B gene. Mol. Genet. and Genom. 276:264-272 https://doi.org/10.1007/s00438-006-0142-8
  26. Xu, D. Q., Xiong, Y. Z., Ling, X. F., Lan, J., Liu, M., Deng, C. Y., Jiang, S. W. and Lei, M. G. 2005. Identification of a differential gene HUMMLC2B between F1 hybrids Landrace$\times$$Yorkshire and their female parents Yorkshire. Gene. 352:118-126 https://doi.org/10.1016/j.gene.2005.04.010