The Flow-rate Measurements in a Multi-phase Flow Pipeline by Using a Clamp-on Sealed Radioisotope Cross Correlation Flowmeter

투과 감마선 계측신호의 Cross correlation 기법 적용에 의한 다중상 유체의 유량측정

  • Kim, Jin-Seop (Korea Atomic Energy Research Institute, Radioisotope Research Division) ;
  • Kim, Jong-Bum (Korea Atomic Energy Research Institute, Radioisotope Research Division) ;
  • Kim, Jae-Ho (Korea Atomic Energy Research Institute, Radioisotope Research Division) ;
  • Lee, Na-Young (Korea Atomic Energy Research Institute, Radioisotope Research Division) ;
  • Jung, Sung-Hee (Korea Atomic Energy Research Institute, Radioisotope Research Division)
  • 김진섭 (한국원자력연구원 동위원소이용기술개발부) ;
  • 김종범 (한국원자력연구원 동위원소이용기술개발부) ;
  • 김재호 (한국원자력연구원 동위원소이용기술개발부) ;
  • 이나영 (한국원자력연구원 동위원소이용기술개발부) ;
  • 정성희 (한국원자력연구원 동위원소이용기술개발부)
  • Published : 2008.03.31

Abstract

The flow rate measurements in a multi-phase flow pipeline were evaluated quantitatively by means of a clamp-on sealed radioisotope based on a cross correlation signal processing technique. The flow rates were calculated by a determination of the transit time between two sealed gamma sources by using a cross correlation function following FFT filtering, then corrected with vapor fraction in the pipeline which was measured by the ${\gamma}$-ray attenuation method. The pipeline model was manufactured by acrylic resin(ID. 8 cm, L=3.5 m, t=10 mm), and the multi-phase flow patterns were realized by an injection of compressed $N_2$ gas. Two sealed gamma sources of $^{137}Cs$ (E=0.662 MeV, ${\Gamma}$ $factor=0.326\;R{\cdot}h^{-1}{\cdot}m^2{\cdot}Ci^{-1}$) of 20 mCi and 17 mCi, and radiation detectors of $2"{\times}2"$ NaI(Tl) scintillation counter (Eberline, SP-3) were used for this study. Under the given conditions(the distance between two sources: 4D(D; inner diameter), N/S ratio: $0.12{\sim}0.15$, sampling time ${\Delta}t$: 4msec), the measured flow rates showed the maximum. relative error of 1.7 % when compared to the real ones through the vapor content corrections($6.1\;%{\sim}9.2\;%$). From a subsequent experiment, it was proven that the closer the distance between the two sealed sources is, the more precise the measured flow rates are. Provided additional studies related to the selection of radioisotopes their activity, and an optimization of the experimental geometry are carried out, it is anticipated that a radioisotope application for flow rate measurements can be used as an important tool for monitoring multi-phase facilities belonging to petrochemical and refinery industries and contributes economically in the light of maintenance and control of them.

석유 및 정유관련 산업에서 다중상(multi-phase flow) 유체의 배관 내 흐름은 일반적인 현상의 하나이다. 그러나 각각의 상에 대한 정확한 유량측정은 항상 정확한 결과획득을 얻는데 장애의 근원으로 작용하였다. 일반 상업용 유량계는 일정 이상의 기포가 포함된 유체 흐름의 경우 유량계측에 상당한 오차를 유발한다. 본 연구에서는 ${\gamma}$-ray attenuation 기법을 이용하여 clamp-on 타입으로 배관 외부에서 다중상 유체흐름의 유량 측정을 수행하였다. 사용된 밀봉 감마선원으로는 $^{137}Cs$ 20 mCi와 17 mCi 두 개의 동위원소를 사용하였으며, 감마선 검출기로는 $2"{\times}2"$ NaI(Tl) 섬광계수관을 이용하였다. 방사선 검출기로부터 데이터를 수집하고 각각의 데이터에 대해 푸리에 변환과 필터링을 통해 노이즈를 최소화하였다. 복원된 신호에 대해 상호상관함수(cross correlation function)를 적용하여 두 검출기 사이의 통과시간(transit time)을 측정함으로써 유량을 산정하였다. 배관 내 기포함량 측정을 통해 유량을 보정해줌으로써 측정유량의 정확도를 높였다. 두 선원간의 거리가 4D(D; inner diameter) 그리고 본 실험의 측정조건(N/S: $0.12{\sim}0.15$, sampling time ${\Delta}\;t$: 4msec) 하에서 기포량(단면적 대비 $6.1\;%{\sim}9.2\;%$) 보정을 통해 산정된 유량은 계측오차가 실제 평균유량 대비 1.7 % 이하인 정확도를 보였다. 또한 두 밀봉 감마선원 간의 거리가 가까울수록 통과시간 측정에 정확도가 향상되므로 보다 정확한 유량측정이 가능하였다. 본 연구를 통해 다중상 혼합유체의 유량을 밀봉감마선원과 상호상관 기법으로 이용하여 계측할 수 있음을 확인하였다. 방사성동위원소의 선택 및 계측시스템의 최적화 조건 등에 대한 추가연구가 수행된다면 석유화학 산업과 같은 장치산업의 유지관리 측면에 경제적으로 크게 기여할 수 있을 것으로 판단된다.

References

  1. Schneider F, Peters F, Merzkirch W. Quantitative analysis of the cross-correlation ultrasonic flow meter by means of system theory. Meas. Sci. Technol. 2003;14:573-582 https://doi.org/10.1088/0957-0233/14/5/306
  2. Worch A. A clamp-on ultrasonic cross correlation flow meter for one-phase flow. Meas. Sci. Technol. 1998;9:622-630 https://doi.org/10.1088/0957-0233/9/4/010
  3. Xu LA, Green RG, Plaskowski A, Beck MS. The pulsed ultrasonic cross-correlation flowmeter for two-phase flow measurement. J. Phys. E: Sci. Instrum. 1998;21:406-414 https://doi.org/10.1088/0022-3735/21/4/014
  4. Beck MS. Correlation in instruments: cross correlation flowmeters. J. Phys. E: Sci. Instrum. 1981;14:7-19 https://doi.org/10.1088/0022-3735/14/1/001
  5. Beck MS, Plaskowski A. Cross Correlation Flowmeters- Their Design and Application. Bristol: Adam Hilger, 1987
  6. Mackley IG. Multiphase metering past, present and future. Proc. Sem. Multiphase Meters and their Subsea Applications, London, 1993
  7. Slijkerman WFJ, Jamieson AW, Priddy WJ, Okland O, Moestue H. Oil companies' needs in multiphase flow metering. Proc. 13th North Seas Flow Measurement Workshop, Lillehammer, Norway, 1995
  8. Thorn R, Johansen GA, Hammer EA. Review article on recent developments in three-phase flow measurement. Meas. Sci. Technol. 1997;8:691-701 https://doi.org/10.1088/0957-0233/8/7/001
  9. Leszek Petryka. Radiometric cross-correlation techniques for flow rate measurement in multi-phase system. International atomic energy agency consultants' meeting, Krakow, Poland, 2001; 22-26 Oct
  10. Petryka L. Precise velocity measurements in two phase flow by means of sealed radioactive sources. The End-of-Mission Report to Kuala Lumpur, IAEA, RAS/8/078-06, 1998
  11. 김진섭, 정성희, 김종범, 밀봉감마선원($^{137}Cs$)을 이용한 석유 화학산업의 유체이송배관 내 가동 중 이상 진단기술. 한국공업화학회, 2005;16(6):794-799
  12. Kim JS, Jung SH, Kim JB. In-service identification of the heterogeneous zone in petrochemical pipelines by using sealed gamma-ray sources($^{60}Co$, $^{137}Cs$). J. the Korea society for nondestructive testing, 2006;26(3) :169-173
  13. Avinash C. Kak, Malcolm Slaney. Principles of computerized tomographic imaging. IEEE, New York. 1999:5-47
  14. Fred J. Taylor. Principles of signals and systems, McGraw- Hill, Singapore, 1994:506-528
  15. Geir Anton Johansen, Peter Jackson. Radioisotope gauges for industrial process measurments, John Wiley & Sons, 2004:215-221
  16. Robert P. Benedict. Fundamental of pipe flow, John Wiley & Sons, 1980:178-227
  17. Jenkins DM, Lysak PD, Capone DE, Brown WL, Askari V. Ultrasonic cross-correlation flow measurement: Theory, noise, contamination mechanisms, and a noise mitigation technique. Proc. 14th International conference on nuclear engineering(ICONE), July 17-20, Miami, Florida, USA
  18. Scheers AM, Letton W. An oil/water/gas composition meter based on multiple energy gamma ray absorption (MEGRA) measurement. Proc. 14th North Sea Flow Measurement Workshop, Peebles, Scotland, 1996
  19. Van Santen H, Kolar ZI, Scheers AM. Photon energy selection for dual energy $\gamma$-and/or X-ray absorption composition measurements in oil-water-gas mixtures. Nucl. Geophys. 1995;9:193-202
  20. Hewitt GF, Harrison PS, Parry SJ, Shires GL. Development and testing of the 'Mixmeter' multiphase flow meter. Proc. 13th North Sea Flow Measurement Workshop, Lillehammer, Norway, 1995
  21. Tjugum SA, Hjertaker BT, Johansen GA. Multiphase flow regime identification by multibeam gamma-ray densitometry. Meas. Sci. Technol. 2002; 13:1319-1326 https://doi.org/10.1088/0957-0233/13/8/321
  22. Roach GJ, Watt JS, Zastawny HW, Hartley PE, Ellis WK. Multiphase flow meter for oil, water and gas in pipelines based on gamma-ray transmission techniques. Nucl. Geophys. 1994;8:225-242