Comparison of Cyanide Degrading Enzymes Expressed from Genes of Fungal Origin

  • Cho, Dae-Chul (Department of Energy & Environmental Engineering Soonchunhyang University) ;
  • Kwon, Sung-Hyun (Department of Marine Environmental Engineering/Institute of Marine Industry, Gyeongsang National University)
  • Published : 2008.11.30


A variety of fungal species are known to degrade cyanide through the action of cyanide hydratase, a specialized nitrilases which hydrolyze cyanide to formamide. This work is a report on two unknown and un-characterized members from Neurospora crassa and Aspergillus nidulans. Recombinant forms of three cyanide hydratases (CHT) originated from N. crassa, Gibberella zeae, and A. nidulans were prepared after their genes were cloned with N-terminal hexahistidine purification tags, expressed in E. coli and purified using immobilized metal affinity chromatography. These enzymes were compared according to their pH activity profiles, and kinetic parameters. Although all three were similar, the N. crassa CHT has the widest pH range of activity above 50% and highest turnover rate ($6.6{\times}10^8min^{-1}$) among them. The CHT of A. nidulans has the highest Km value of the three nitrilases evaluated in here. Expression of CHT in both N. crassa and A. nidulans were induced by the presence of KCN, regardless of any presence of nitrogen sources. These data can be used to determine optimal procedures for the enzyme uses in the remediation of cyanide-containing wastes.


  1. Barclay M., Tett V. A., Knowles C. J., 1998, Metabolism and enzymology of cyanide/metallocyanide biodegradation by Fusarium solani under neutral and acidic conditions, Enz. Microb. Technol., 23, 321-330
  2. Kaminsky S. G. W., 2001, Fundamentals of growth, storage, genetics and microscopy of Aspergillus nidulans, Fung. Genet. Newslett., 25-31
  3. Fisher F. B., Brown J. S., 1952, Colorimetric determination of cyanide in stack gas and waste water, Anal. Chem., 24, 1440-1444
  4. Akcil A., Mudder T., 2003, Microbial destruction of cyanide wastes in gold mining: process review, Biotechnol. Lett., 25, 445-450
  5. Hardy R. W., Knight E., 1967, ATP-dependent reduction of azide and HCN by N2-fixing enzymes of Azotobacter vinelandii and Clostridium pasteurianum, Biochim. Biophys. Acta, 139, 69-90
  6. Westley J., 1987, Thiosulfate:cyanide sulfurtransferase( rhodanese), Met. Enzymol., 77, 285-291
  7. Kobayashi M., Goda M., Shimizu S., 1998, Nitrilase catalyzes amide hydrolysis as well as nitrile hydrolysis, Biochim Biophys. Res. Comm., 253, 662-666
  8. Pace H. C., Brenner C., 2001, The nitrilase superfamily: classification, structure ad function, Gen. Biol., 2, REVIEWS0001
  9. Banerjee A., Sharma R., Banerjee U. C., 2002, The nitrile-degrading enzymes-current status and future prospects, Appl. Microbiol. Biotechnol., 60, 33-44
  10. Cluness M. J., Turner P. D., Clements E., Brown D. T., O'Reilly C., 1993, Purification and properties of cyanide hydratase from Fusarium lateritium and analysis of the corresponding chy1 gene," J. Gen. Microbiol., 139, 1807-1815
  11. Nolan L. M., Harnedy P. A., Turner P., Hearne A. B., O'Reilly C., 2003, The cyanide hydratase enzyme of Fusarium lateritium also has nitrilase activity, FEMS Microbiol. Lett., 221, 161-165
  12. Sexton A. C., Howlett B. J., 2000, Characterisation of a cyanide hydratase gene in the phytopathogenic fungus Leptosphaeria maculans, Mol. Gen. Genet., 263, 463-470
  13. Jandhyala D. M., Willson R. C., Sewell B. T., Benedik M. J., 2005, Comparison of cyanide degrading nitrilases, Appl. Microbiol. Biotechnol., 68, 327-335
  14. Vogel H. J., 1956, A convenient growth medium for Neurospora (medium N), Microbiol. Genet. Bull., 13, 42-43
  15. Studier F. W., 2005, Protein production by auto-induction in high density shaking cultures, Prot. Expr. Purif., 41, 207-214
  16. Baxter J., Cummings S. P., 2006, The current and future applications of microorganism in the bioremediation of cyanide contamination, Ant. Van Leeuwen., 90, 1-17
  17. Brenner C., 2002, Catalysis in the nitrilase superfamily, Curr. Opn. Struct. Biol., 12, 775-782
  18. Mathew C. D., Nagasawa T., Kobayashi M., Yamada H., 1988, Nitrilase catalyzed production of nicotinic acid from 3-cyanopyridine in Rhodococcus rhodochrous J1, Appl. Environ. Microbiol., 54, 1030-1032
  19. Kobayashi M., Shimizu S., 1994, Versatile nitrilase: Nitrile-hydrolyzing enzymes, FEMS Microbiol. Lett., 120, 217-224
  20. Watanabe A., Yano K., Ikebukuro K., Karube I., 1998, Cloning and expression of a gene encoding cyanidase from Pseudomonas stutzeri AK61, Appl. Microbiol. Biotechnol., 50, 93-97

Cited by

  1. Biodegradation of Hazardous Contaminants vol.26, pp.2, 2016,