Reactive Oxygen Species and Cytotoxicity of Bamboo (Phyllostachys pubescens) Sap

Sook–Hyun Cho, Yong–Jo Choi, Chi–Woong Rho,
Chul–Yung Choi¹, Deok–Song Kim², Sung–Hwan Cho³∗
Gyeongsangnam-do Agricultural Research & Extension Services, Chinju 660-360, Korea
¹Division of Food Science, Jinju National University, Chinju 660-759, Korea
²Department of Biology, College of Natural Science, Chonnam National University, Gwangju 500-757, Korea
³Department of Food Science and Technology, Institute of Agriculture and Life Science,
Gyeongsang National University, Chinju 660-701, Korea

Abstract

The antioxidant properties of bamboo sap isolated from Phyllostachys pubescens were investigated. This product scavenged intracellular reactive oxygen species (ROS) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, and prevented lipid peroxidation. The radical scavenging activity of bamboo sap protected the viability of peritoneal macrophage cells exposed to hydrogen peroxide (H₂O₂). Furthermore, bamboo sap reduced apoptotic cell formation induced by H₂O₂ as demonstrated by decreases in the number of hypoploid cells and apoptotic cell body formation. These results indicate that bamboo sap has radical scavenging activity and ameliorates H₂O₂ induced cytotoxicity.

Key words: Bamboo sap, ROS, DPPH, Lipid peroxidation, antioxidant activity

서 론

대나무는 중국 하남지방 원산지로 아일대성 식물이며 우리나라를 포함한 동남아시아에 주로 분포하고 있고, 우리나라에는 70여종이 자생하고 있다. 대표적인 종류는 왕 대, 송대, 맹종족, 조릿대, 신의대 등을 들 수 있으며 분포면 적은 약 7,040km²를 차지하고 있다(산림청, 응急통계 2005). 그리고 특히 맹종족은 우리나라 남부지방을 주생산지로 전체면적의 83% 차지하고 있다(1,2). 대나무는 예로부터 한약재로 견질, 가시, 잔, 나무인 죽어 등이 이용되어 왔고(3) 수액보다는 증기, 포기, 죽은 채로 등이 질병치료로 제로 이용되어져 왔으며 최근에는 고려쇠나무와 같이 수액을 체취하여 음용하는 수요도 늘어나고 있다(4). 수액이란 도관을 통해 유동하는 액체로써 무기염, 염소화합물, 탄수화물, 효소, 식물호르몬 등이 용해되어 있는 비교적 독한 용액을 말하며, 수액의 조성은 물이 99.3%, 고형분은 0.7%에 불과하지만 보통의 물과는 다른 특성을 나타내고 있다(5-7). 식물의 수액을 건강용으로 마시는 풍속은 소련, 중국, 일본에서는 오랜 역사를 가지고 있으며 민간약으로 이노, 벼미, 위장병, 고혈압, 당뇨병, 신경질 등에 효험이 알려져 있어 이들 수액의 성분들에 대한 관심이 높다(8). 국내에서 수액으로 제취 가능한 수종은 고려쇠나무, 당단송나무, 자작나무, 가지째수나무, 박달나무, 불박달나무, 사스래나무와 대나무 (맹종족, 왕대, 송대) 등이며, 그 중 한국식품의약 품안전정조의 식품원료 인증을 획득한 수액은 3종으로 고려쇠나무, 자작나무수액, 대나무수액이 있다(식품공정, 1998). 대나무수액은 생육력이라고도 불리여 몸의 노폐

⁴ Corresponding author. E-mail: sunghcho@gssu.ac.kr
Phone: 82-55-755-5478, Fax: 82-55-755-4630
물은 섞여나와 혈압을 조절하는 등의 효과가 있다고 알려져 왔지만, 약물작용을 갖는 특수성분에 대한 추정만 이루어지고 있을 뿐 근거가 매우 부족하다고 대나무수액의 혈압 활성에 관한 과학적 근거 뿐만 아니라 가공방법의 부재와 그 효능이 과학적으로 증명되지 않은 허위가설로 불구하고 농업적 소득에는 거의 도움이 되지 않고 있으므로 앞으로도 많은 연구가 필요할 것으로 보인다. 현재까지 이 논의 대나무관련 연구로는 대나무의 성분분석(10) 및 항바이러스와 항암작용(11, 12), 대나무 열수추출물의 화학적 특성 및 항산화효과(13, 14), 대나무 잎의 생리활성 및 항균효과(15-20), 등이 보고된 바 있으며, 대나무수액에 대한 연구는 수액의 채취량과 채취 방법 및 약용의 이용 가능성(21-23)에 대한 연구 정도만 행해지고 있는 실정이다.

한편 인체는 생명유지에 필요한 에너지를 얻는 호흡과정을 통해 결합한 산소를 필요로 하며 호흡과정에서 흡입한 산소 중 일부 (약 2-3%)는 활성산소라는 유독한 물질로 전환되어 세포에 손상을 일으키는 것으로 알려져 있다(24). 이러한 활성산소는 (reactive oxygen species, ROS)는 내과 효과, 화학대사, 물리적 또는 화학적 요인 등에 의한 결함 없이 생성되고 있는 일종 항산소 (O2')나 superoxide (O2−), hydroxyl radical (OH •) 등의 같은 핵질을 갖는 상태의 free radical과 산화수소 (H2O2) 등으로 이들은 분자 구조적으로 매우 불안정하기 때문에 분자와 세포내분자 반응을 공격하여 산화적 손상을 유발시킨다(25). 산화적 스트레스에 의한 ROS의 생성은 간질유화(26), 당뇨병(27) 등의 여러 가지 질환의 원인이 될 수 있으며, 특히 free radical (NO, OH, O2)는 분자간 산소가 활성산소로 변하여 다른 분자들에 반응하면서 생성되어 노화, 염증, 발암, 동맥경화(28)와 직접 관련이 있는 것으로 알려져 있다. 불포화지방산을 중포 함유 세포막은 생성된 free radical에 의해서 지질과산화의 표적이 되어 세포 소기관들이 정상적인 구조 및 기능을 잃게 되며, 이러한 현상은 물론 백혈관태양이와 같은 지질과산화 부재중이 생성된 부위에서 백혈 진단의 부위로 이어져 세포수족을 일으키게 된다(29). 최근 성인병 질환과 노화의 원인이 활성산소에 기인한 것이라는 학설이 인정됨에 따라 산소로부터 유래한 활성산소 증출이 경하거나 저하시킬 수 있는 물질로 알려진 항산화제들의 개발 연구가 활발히 진행되고 있으며 결과적으로 많은 새로운 항산화제들이 보고되어 왔다(30,31). 그러나 BHA와 BHT 등의 함정 산화제는 항산화력이 뛰어나 상업적 섭취 및 의약품 등에 가장 많이 이용되고 있는 폐쇄형 항산화제이나 이들은 변이전형 및 독성의 유해성이 지적되어 있어 (32) 사용이 엄격히 규제하고 있는 추세이다. 따라서 본 연구에서는 이러한 개발성적이며 천연항산화제와 달리 천연 대나무수액을 이용하여 보다 안전하고 독성이 없는 항산화 효능분석을 통하여 천연 항산화 식품소재 활용을 위한 기초 자료로 제공하고자 하였다.

재료 및 방법

실험재료

대나무 잎 (행주종, Phyllostachys pubescens) 수액 채취는 경남 사천시 고양면 소재지에서 5월에 3~4년생 대나무를 지면에서 2~3㎝씩 마디 부분을 자른 뒤 수액이 흘러나온 부분에 비닐 튜브를 씌워 12시간 정도 채취하였다. 채취한 수액은 동결 건조를 통해 분말화한 후 -20℃에 사용 전까지 보관하였다. 동물세포에 처리 전 500 mg/mL의 농도로 녹여, pore size가 0.2 μm membrane filter로 여과시켜 -20℃에 보관하고 실험에 이용하였다.

시험

본 실험에 사용한 주요 시약으로 Dulbecco’s modified Eagle’s medium (DMEM)과 fertil bovine serum (FBS)은 Gibco/BRL (Burlington, Ontario, Canada)사 제품을 이용하였고, Dimethyl sulfoxide (DMSO), isopropanol, triton, sodium bicarbonate, 3-(4,5-yl)-2,5-diphenyterrazolium bromide (MTT), Thiobarbituric acid (TBA), L-ascorbic acid, Ferrous sulfate, Hydrogen peroxide, 그리고 기타 시약은 Sigma (St. Louis, MO)사 제품을 사용하였다.

세포배양

마우스의 전복 팔꿈시킨 후 HBSS를 묻어 주사하여 대사 세포를 절리내다 다음 56℃에서 30분간 열처리한 fertil bovine serum (FBS)를 10% 첨가한 RPMI 1640매지에 100 units/mL의 penicillin/streptomycin을 넣어 대식세포를 분리 사용하였으며, 37℃, 5% CO2 incubator에서 배양하였다.

DPPH radical 소거작용 측정

시료 10 μL에 10 mM DPPH (1,1-diphenyl-2-picrylhydrazyl) 용액 30 μL 가하여 10초간 전량 후 30분간 정식시킨 후 증류수물로 10% 알코올 내-cat 가하여 10~30분간 부착하고 517 nm에서 시료를 가진다 사용자도의 황은 황도 감소를 수소증응동 양성으로 나타내었다.

반응성 유해산소종 (Reactive Oxygen Species: ROS) 측정
반응성 유해산소종의 양은 항산화저자물질 (probe)인 2',7'-dichlorofluorescein diacetate (DCFH-DA)를 well 당 25 μL로 처리하여 15분간 배양한 후 대나무수액과 세포내 생성된 산소라플라시 (ROS)에 의하여 산화되어 deacytlatation되면서 생성되는 DCF가 항산화 능력을 높은 물질로 전환되는 반응 측, 지연성의 DCF-DA가 esterase 또는 산화적 가수분해를 받아 비활성화로 DCFH로 받아내흡수화하며, DCFH는 활성산소에 의해 산화되어 강한 항산화성은 나타나는 2',7'-dichlorofluorescein (DCF)이 되는 것을 이용하여 excitation 파장 482 nm, emission 파장 530 nm에서 fluorescence를 측정하였다(33).
지질과산화 항병 측정

_in vitro_ 실험으로 환경의 너 100 mg를 적층 후 10 mL의 Tris-HCl buffer에 넣은 후 homogenization 시켰다. 이 수용액을 12,000 rpm에 20 분간 centrifuge 시킨 후 그 상층액 을 300 μL 취하였다. 그 상층액에서 FeSO₄와 ascorbic acid의 각각 10 μM, 0.1 mm을 넣은 다음 시료를 농도별로 넣은 후 37 ℃ water bath에서 1시간 동안 반응시켰다. 반응 후 동량의 TCA를 처리하여 반응을 멈추고, 이물질 친정시 간 후 2-thiobarbituric acid (TBA)를 500 μL 넣어 과산화 지질의 분해 생성물인 malondialdehyde와 TBA가 반응하도록 100 ℃에서 20 분간 가열 반응시켜 생긴 TBA 반응생물 (TBA reactive substance)을 532 nm에서 흡광도를 측정하였다.

MTT Assay를 이용한 세포독성 측정

실험에 이용되는 세포를 배양한 후 MTT labeling reagent 에 electron coupling reagent를 첨가하여 준비한 MTT labeling mixture를 각 well당 10 μL씩 (총농도 0.5 mg/mL) 4시간 처리한 후 550 nm 파장에서 흡광도를 이용하여 대나무수액 자체의 세포독성을 조사하였다.

통계처리

모든 실험 결과들은 3반복을 수행하였으며, mean ± SD 로 나타냈고, 통계처리는 Dunnett's test를 실시하여 p < 0.05 를 기준으로 유의성 여부를 판정하였다.

결과 및 고찰

대나무수액의 DPPH 및 ROS

대나무수액의 항산화 효과를 알아보기 위해 DPPH를 이용한 자유 라디칼 소거능 실험을 수행하였다. DPPH는 안정한 유리기로 cysteine, glutathione과 같은 항산화 아미노산과 ascorbic acid, aromatic amine 등의 의해 탈색되어 탈색없이 항산화물질의 항산화 능성 측정에 편리한 방법이 며 (34) DPPH 전자공여 작용은 환경 라디칼에 전자를 공여하여 식품성 지방질 산화를 억제하는 목적으로 사용하고 있을 뿐만 아니라, 인체내에서 환경 라디칼에 의한 노화를 억제하는 것으로 이용되고 있는 연구 방법이다 (35). Fig. 1에 나타낸 것처럼 아무런 처리도 하지 않은 대조군에 비해 항산화재인 ascorbic acid는 99.48 %의 강한 자유기 소거효과를 보였고, 대나무수액 동정건조물 10 mg/mL에서 21.67 %, 50 mg/mL에서는 42.50 %, 그리고 100 mg/mL에서는 50.00 %의 활성을 보였지만 대나무수액 200 mg/mL에서는 70.83 %로 농도별 의존적으로 free radical 소거작용을 나타냈다. 대나무 수액과 동정 건조물의 자유기 소거능 DPPH 활성이 더이상남을 알 수 있었다. Kim 등(36)의 연구에서 면봉죽추출물이 in vitro와 in vivo에서 높은 항산화 효과를 나타내다고 보고하였고, Kwecn 등(37)이 보고한 면봉죽 추출물에서도 강력한 항산화력이 있다는 연구와 일치하는 결과를 보였다.

또한 산화된 세포에서의 항산화 능을 측정하기 위하여 DCFH-DA를 이용한 ROS를 측정하였다(Fig. 3). O₂⁻, H₂O₂를 포함하는 ROS는 생체내에서 지속적으로 생성되지만 적절하게 제어되지 않으면 축적되어서 단백질, 지질, 핵산 등에 손상을 야기하고 (38,39), 또한 노화과정에 중요 한 역할을 한다. 이들 항색 산소에 의한 지질과산화 결과 생성되는 지질과산화물을 비롯하여 여러 체내 과산화물로 세포에 대한 산화적 과에 인한 각종 기능장애의 야기하여 (40), 항색 산소가 정상적으로 소거되지 않을 때 천존하는 자유 라디칼에 의해 산화적 스트레스를 받게 되면서 다른 질병의 원인이 되기도 하고, 식품에서도 부패와 독성 물질 생성 등으로 유해한 작용을 하는 것으로 알려져 있다 (41). 측정 결과 대나무수액 자체가 항산화 효과를 나타내어 환경에 영향을 미치는 것으로 간주되며, 이러한 결과로 미루어 대나무수액은 노화 방지 및 미부노화 방지 화장품 소재로서의 가능성도 보여준다고 사료된다.

![Fig. 1. DPPH radical scavenging effects of bamboo sap at different concentration.](image)

Bamboo sap was mixed with DPPH (10 μM) in methanol (3 mL). The mixture reactions were then colored by the addition of toluene, and read at 517 nm against a blank without Bamboo sap. The degree of DPPH bleaching is expressed as a percentage in relation to the absorbance of the control. Each value represents the mean±S.D. of three independent experiments, performed in triplicate. *P < 0.05, significantly different from the control.

![Fig. 2. Effect of Bamboo sap on the intracellular ROS formation induced by H₂O₂.](image)

The cultured macrophages were treated with 25 μM of dichloro-dihydrofluorescein diacetate for 30 min and the medium was replaced by fresh medium containing H₂O₂ (300 μM) and Bamboo sap (10, 50, 100, 200 μg/mL). After 10 min of treatment, the intracellular reactive oxygen species were measured by monitoring the fluorescence increases for 30 min. Each value represents the mean±S.D. of three independent experiments, performed in triplicate. *P < 0.05, significantly different from the control.
대나무수액의 지질과산화 억제능

취의 냄를 이용한 항산화 효과를 지질과산화 방법을 통해 측정한 결과 FeCl₃에 의해 유발되었던 지질과산화 정도가 대나무수액 50%에 10, 50, 100 및 200 μg/mL로 처리하였을 때 대나무수액 농도에 따라 22.22, 26.67, 33.33 및 38.10%의 지질과산화 억제능을 나타내었다(Fig. 3). 이러한 결과로 대나무수액의 항산화효과를 다시 확인 할 수 있었다.

Fig. 3. Effect of bamboo sap on lipid peroxidation inhibition.

Bamboos sap(10, 50, 100, 200 μg/mL) was mixed with brain extract (100 mg) in PBS (pH 7.4) with FeCl₃. Each value represents the mean ± S.D. of three independent experiments, performed in triplicate. *P < 0.05, significantly different from the control.

대나무수액의 세포독성

대식세포의 일차 배양을 통해 산화적 자극물질인 H₂O₂를 이용한 세포독성에 실험을 수행하였다. 산화적 자극에 의해 유발된 세포독성에 대한 대나무수액의 보호효과를 확인한 결과 DPPH와 ROS측정을 통해 유의한 효과가 나타내며 농도에서 산화적 자극에 의해 유발된 세포 독성이 농도 의존적으로 감소하는 것을 확인 할 수 있었으며(Fig. 4) 과산화수소에 의해 야기되는 세포독성을 억제하여주는 효과가 매우 뛰어난 것으로 나타났고, 특히 고농도 (200 μg/mL)에서 세포 손상 방지 효과가 크게 나타났음을 확인하였다.

Fig. 4. Effect of bamboo sap on H₂O₂-mediated cytotoxicity in peritoneal macrophages.

The cells (1×10⁶ cell/mL) were treated with various concentrations of bamboo sap and the cells were tested for viability by MTT assay 24h after the treatment of bamboo sap. The value represented the mean ± S.D. of three independent experiments, performed in triplicate. *P < 0.05, significantly different from the control.

이상의 결과로부터 대나무수액이 안전하고 독성이 전혀 없는 천연 항산화제로서 이용 가능성이 높다는 것을 알 수 있었다. 결론적으로 본 연구결과 대나무수액이 DPPH radical scavenging activity, 세포독성, ROS 생성 및 지질과산화 생성 억제에 의해 측정된 결과를 보면 강한 항산화 효과를 가지므로 천연식품소재 및 화장품소재에도 적용될 수 있다고 사료된다.

요 약

대나무수액의 자유라디칼 소거능을 측정하기 위하여 DPPH를 이용한 자유 라디칼 소거능 실험을 수행하여 항산화 효과를 측정한 결과 대나무수액의 농도가 높을수록 DPPH 활성화가 빠르게 둔화됨을 알 수 있고, ROS를 이용하여 항산화효과를 확인하였다. 배양된 대식세포에 대나무수액을 농도별로 청가한 결과 대나무수액 농도가 높음수록 과산화수소에 의해 유도된 산화적 자극이 감소하였다. 또한 세포 생존에 미치는 영향을 살펴본 결과 대나무수액을 농도별로 청가하여 24시간 후 세포의 형태변화를 MTT assay로 산상한 결과 산화적 자극에 의해 발생한 세포손상이 대나무수액의 농도가 높아질수록 감소하는 것이 확인되었다. Ascorbic acid는 H₂O₂에 의해 야기되는 세포독성을 억제해주주는 효과가 10%를 주도하게 나타났고, 대나무수액 역시 고농도에서 27%의 세포손상 방지효과가 우수하였다. 따라서 대나무수액은 안전하고 독성이 전혀 없는 천연 항산화제로서의 가능성을 보였다.

감사의 글

본 논문은 농촌진흥청 지역특화기술개발사업의 연구비로 수행된 연구 결과의 일부이며, 연구비를 지원하여 주신 농촌진흥청 관계자에게 감사드립니다.

참고문헌

albomarginata 5. Combined effects of the extract F-D with vitamin C. Shoyalu, Y. Zasshi. 34, 274-279
7. 김홍은, 김기철, 박철호, 조남석 (1998) 소백산 지역의 수액채취증의 분포 및 수액채취량 Mockchae Konghak. 20, 15-19

(검수 2007년 11월 8일, 채택 2008년 1월 18일)