Effect of Solvents on the Structure of Electrospun PVP Fiber

PVP의 전기방사 섬유 제조에서 용매에 따른 구조 변화

  • Park, Ju-Young (Department of Environmental Engineering, BK21 Team for Biohydrogen Production, Chosun University) ;
  • Lee, In-Hwa (Department of Environmental Engineering, BK21 Team for Biohydrogen Production, Chosun University)
  • 박주영 (조선대학교 환경공학과 BK21 바이오가스기반 수소생산 전문인력양성사업팀) ;
  • 이인화 (조선대학교 환경공학과 BK21 바이오가스기반 수소생산 전문인력양성사업팀)
  • Received : 2008.04.07
  • Accepted : 2008.08.01
  • Published : 2008.10.10


Electrospun of PVP (polyvinylpyrrolidone) ultra fine fibers were fabricated using various solvents including methanol, ethanol, 2-propanol, butanol, acetone, methylene chloride, and DMF, which possess different properties such as boiling point, dielectric constant, and dipole moment. Electrospun PVP fiber was influenced by viscosity, conductivity, and surface tension of spinning solution. Therefore, the electrospun PVP fiber was successfully prepared under critical conditions of viscosity > $0.114kg/m{\cdot}s$, conductivity > 1.02 mS/m, surface tension < 30.0 mN/m. In case of an ethanol solvent system, average diameter of PVP fiber increased from 1701 nm to 5454 nm as increased the applied voltage from 10 kV to 20 kV.


Supported by : 조선대학교


  1. Q. Yang, Z. Li, Y. Hong, Y. Y Zhao, S. Qiu, C. Wang, and Y. Wei, Journal of Polymer Science; Part B; Polymer Physics, 42, 3721 (2004) https://doi.org/10.1002/polb.20222
  2. D. R. Chang, Y. J. Cho, and G. S. Heo, Textile Science and Engineering, 14, 245, (2006)
  3. S. Ramakrishna, K. Fujihara, W. E. Teo, T. C. Lim, and M. Zuwei, An Introduction Electrospinning and Nanofibers, pp. 101, World Scientific Publishing Company, Singapore (2005)
  4. M. Bognizki, T. Frese, M. Steinhart, A. Greiner, J. H. Wendorff, A. Schape, and M. Hellwing, Polym Eng Sci, 41, 982 (2001) https://doi.org/10.1002/pen.10799
  5. N. Wiwat, N, Siaysunee, J. Wirat, M. Santi, and S. Supapan, Material Science and Engineering B, 131, 147 (2006) https://doi.org/10.1016/j.mseb.2006.04.030
  6. J. Yuh, J. C. Nino, and W M. Sigmund, Material, 59, 3645 (2005)
  7. J. Yuh, L. Perez, W. M. Sigmund, and J. C. Nino, Physica E, 37, 254 (2007) https://doi.org/10.1016/j.physe.2006.09.013
  8. G. T. Kim, Y. J. Hwang, Y. C. Ahn, H. S. Shin, J. K. Lee, and C. M. Soung, Korean J. Chem. Eng., 22, 147 (2005) https://doi.org/10.1007/BF02701477
  9. X. H. Zhong, K. S. Kim, D. F. Fang, S. F. Ran, B. S. Hsiao, and B. Chu, Polymer, 43, 4403 (2002) https://doi.org/10.1016/S0032-3861(02)00275-6
  10. H. Liu and Y. L. Heieh, Journal of Polymer Science; Part B: Polymer Physics, 40, 2119 (2002) https://doi.org/10.1002/polb.10261
  11. H. Fong, I. Chun, and D. H. Reneker, Polymer, 40, 4585 (1999) https://doi.org/10.1016/S0032-3861(99)00068-3
  12. J. M. Deitzel, J. Kleinmeyer, D. Harris, and N. C. B. Tan, Polymer, 42, 261 (2001) https://doi.org/10.1016/S0032-3861(00)00250-0
  13. H. J. Sim and S. H. Lee, J. Korean Fiber Soc., 41, 414 (2004)
  14. S. H. Tan, R. Inai, M. Kotaki, and S. Ramakrishna, polymer, 46, 6128 (2005) https://doi.org/10.1016/j.polymer.2005.05.068