Molecular Changes in Remote Tissues Induced by Electro-Acupuncture Stimulation at Acupoint ST36

  • Rho, Sam-Woong (College of Oriental Medicine, Kyunghee University) ;
  • Choi, Gi-Soon (Department of East-West Medicine Graduate School, Kyunghee University) ;
  • Ko, Eun-Jung (College of Oriental Medicine, Kyunghee University) ;
  • Kim, Sun-Kwang (College of Oriental Medicine, Kyunghee University) ;
  • Lee, Young-Seop (College of Oriental Medicine, Kyunghee University) ;
  • Lee, Hye-Jung (College of Oriental Medicine, Kyunghee University) ;
  • Hong, Moo-Chang (College of Oriental Medicine, Kyunghee University) ;
  • Shin, Min-Kyu (College of Oriental Medicine, Kyunghee University) ;
  • Min, Byung-Il (Department of East-West Medicine Graduate School, Kyunghee University) ;
  • Kee, Hyun-Jung (Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Lee, Cheol-Koo (Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Bae, Hyun-Su (College of Oriental Medicine, Kyunghee University)
  • Received : 2007.06.04
  • Accepted : 2007.11.29
  • Published : 2008.04.30


To investigate the effects of electro-acupuncture (EA) treatment on regions remote from the application, we measured cellular, enzymatic, and transcriptional activities in various internal tissues of healthy rats. The EA was applied to the well-identified acupoint ST36 of the leg. After application, we measured the activity of natural killer cells in the spleen, gene expression in the hypothalamus, and the activities of antioxidative enzymes in the hypothalamus, liver and red blood cells. The EA treatment increased natural killer cell activity in the spleen by approximately 44%. It also induced genes related to pain, including 5-Hydroxytryptamine (serotonin) receptor 3a (Htr3a) and Endothelin receptor type B (Ednrb) in the hypothalamus, and increased the activity of superoxide dismutase in the hypothalamus, liver, and red blood cells. These findings indicate that EA mediates its effects through changes in cellular activity, gene expression, and enzymatic activity in multiple remote tissues. The sum of these alterations may explain the beneficial effects of EA.


Acupoint ST36;Electro-Acupuncture;Gene Expression;Oxidative Stress;Reactive Oxygen Species;Remote Tissues


Supported by : Korea Science and Engineering Foundation (KOSEF), Korea Science and Engineering Foundation


  1. Ali, S.F., LeBel, C.P., and Bondy, S.C. (1992). Reactive oxygen species formation as a biomarker of methylmercury and trimethyltin neurotoxicity. Neurotoxicology 13, 637-648
  2. Flohe, L., Gunzler, W.A., and Schock, H.H. (1973). Glutathione peroxidase: a selenoenzyme. FEBS Lett. 32, 132-134
  3. Khodorova, A., Navarro, B., Jouaville, L.S., Murphy, J.E., Rice, F.L., Mazurkiewicz, J.E., Long-Woodward, D., Stoffel, M., Strichartz, G.R., Yukhananov, R., et al. (2003). Endothelin-B receptor activation triggers an endogenous analgesic cascade at sites of peripheral injury. Nat. Med. 9, 1055-1061
  4. Kim, S.K., Lee, G., Shin, M., Han, J.B., Moon, H.J., Park, J.H., Kim, K.J., Ha, J., Park, D.S., and Min, B.I. (2006). The association of serum leptin with the reduction of food intake and body weight during electroacupuncture in rats. Pharmacol. Biochem. Behav. 83, 145-149
  5. Milligan, E.D., Zapata, V., Chacur, M., Schoeniger, D., Biedenkapp, J., O'Connor, K.A., Verge, G.M., Chapman, G., Green, P., Foster, A.C., et al. (2004). Evidence that exogenous and endogenous fractalkine can induce spinal nociceptive facilitation in rats. Eur. J. Neurosci. 20, 2294-2302
  6. Pomonis, J.D., Rogers, S.D., Peters, C.M., Ghilardi, J.R., and Mantyh, P.W. (2001). Expression and localization of endothelin receptors: implications for the involvement of peripheral glia in nociception. J. Neurosci. 21, 999-1006
  7. Sato, T., Yu, Y., Guo, S.Y., Kasahara, T., and Hisamitsu, T. (1996). Acupuncture stimulation enhances splenic natural killer cell cytotoxicity in rats. Jpn. J. Physiol. 46, 131-136
  8. Vandesompele, J., De Paepe, A., and Speleman, F. (2002). Elimination of primer-dimer artifacts and genomic coamplification using a two-step SYBR green I real-time RT-PCR. Anal. Biochem. 303, 95-98
  9. Witt, C., Brinkhaus, B., Jena, S., Linde, K., Streng, A., Wagenpfeil, S., Hummelsberger, J., Walther, H.U., Melchart, D., and Willich, S.N. (2005). Acupuncture in patients with osteoarthritis of the knee: a randomised trial. Lancet 366, 136-143
  10. Kim, S.K., Park, J.H., Bae, S.J., Kim, J.H., Hwang, B.G., Min, B.I., Park, D.S., and Na, H.S. (2005b). Effects of electroacupuncture on cold allodynia in a rat model of neuropathic pain: mediation by spinal adrenergic and serotonergic receptors. Exp. Neurol. 195, 430-436
  11. Flohe, L., Becker, R., Brigelius, R., Lengfelder, E., and Otting, F. (1988). Convenient assays for superoxide dismutase. CRC handbook of free radicals and antioxidants in biomedicine. 3, 287-293
  12. Kim, C.K., Choi, G.S., Oh, S.D., Han, J.B., Kim, S.K., Ahn, H.J., Bae, H., and Min, B.I. (2005a). Electroacupuncture upregulates natural killer cell activity Identification of genes altering their expressions in electroacupuncture induced upregulation of natural killer cell activity. J. Neuroimmunol. 168, 144-153
  13. Liu, C.Z., Yu, J.C., Zhang, X.Z., Fu, W.W., Wang, T., and Han, J.X. (2006). Acupuncture prevents cognitive deficits and oxidative stress in cerebral multi-infarction rats. Neurosci. Lett. 393, 45-50
  14. Radhakrishnan, R., King, E.W., Dickman, J.K., Herold, C.A., Johnston, N.F., Spurgin, M.L., and Sluka, K.A. (2003). Spinal 5-HT(2) and 5-HT(3) receptors mediate low, but not high, frequency TENS-induced antihyperalgesia in rats. Pain 105, 205-213
  15. Chiu, J.H., Chung, M.S., Cheng, H.C., Yeh, T.C., Hsieh, J.C., Chang, C.Y., Kuo, W.Y., Cheng, H., and Ho, L.T. (2003). Different central manifestations in response to electroacupuncture at analgesic and nonanalgesic acupoints in rats: a manganese-enhanced functional magnetic resonance imaging study. Can. J. Vet. Res. 67, 94-101
  16. Lee, B.H., Jeong, S.M., Lee, J.H., Kim, J.H., Yoon, I.S., Lee, J.H., Choi, S.H., Lee, S.M., Chang, C.G., Kim, H.C., et al. (2005). Quercetin inhibits the 5-hydroxytryptamine type 3 receptor-mediated ion current by interacting with pretransmembrane domain I. Mol. Cells 20, 69-73
  17. Brunner, K.T., Mauel, J., Cerottini, J.C., and Chapuis, B. (1968). Quantitative assay of the lytic action of immune lymphoid cells on 51-Cr-labelled allogeneic target cells in vitro; inhibition by isoantibody and by drugs. Immunology 14, 181-196
  18. Hui, K.K., Liu, J., Marina, O., Napadow, V., Haselgrove, C., Kwong, K.K., Kennedy, D.N., and Makris, N. (2005). The integrated response of the human cerebro-cerebellar and limbic systems to acupuncture stimulation at ST 36 as evidenced by fMRI. Neuroimage 27, 479-496
  19. Yu, Y., Kasahara, T., Sato, T., Guo, S.Y., Liu, Y., Asano, K., and Hisamitsu, T. (1997). Enhancement of splenic interferongamma, interleukin-2, and NK cytotoxicity by S36 acupoint acupuncture in F344 rats. Jpn. J. Physiol. 47, 173-178
  20. Chiu, J.H., Cheng, H.C., Tai, C.H., Hsieh, J.C., Yeh, T.C., Cheng, H., Lin, J.G., and Ho, L.T. (2001). Electroacupuncture- induced neural activation detected by use of manganeseenhanced functional magnetic resonance imaging in rabbits. Am J. Vet. Res. 62, 178-182