DOI QR코드

DOI QR Code

Expression Analysis of miRNAs in Porcine Fetal Skeletal Muscle on Days 65 and 90 of Gestation

  • Chen, Jian-hai ;
  • Wei, Wen-Juan ;
  • Xiao, Xiao ;
  • Zhu, Meng-Jin ;
  • Fan, Bin ;
  • Zhao, Shu-Hong
  • Received : 2007.09.16
  • Accepted : 2008.01.21
  • Published : 2008.07.01

Abstract

MiRNAs (microRNAs) are a class of small non-coding RNA molecules of ~21 nucleotides that down- regulate the expression of target genes at post-transcriptional level. In this study, we first accomplished a preliminary scan of miRNA expression using 65 and 90 day fetal pig skeletal muscle samples by microarray hybridization, and 34 miRNAs showed strong positive signals. Five of these miRNAs were selected for further investigation by real-time RT-PCR. The statistical analyses indicated that three miRNAs exhibited significant differential expression (p<0.05) during porcine muscle development from 65 to 90 days of gestation, e.g., miR-24 and miR-424 were down-regulated while miR-133a was up-regulated. Multi-tissue RT-PCR was performed to detect the expression patterns of the five miRNA precursors. The results showed that most of these precursor miRNAs were ubiquitously expressed in different porcine tissues.

Keywords

Pig;MicroRNA;Expression;Skeletal Muscle

References

  1. Bernstein, E., S. Y. Kim, M. A. Carmell, E. P. Murchison, H. Alcorn, M. Z. Li, A. A. Mills, S. J. Elledge, K. V. Anderson and G. J. Hannon. 2003. Dicer is essential for mouse development. Nat Genet. 35:215-217. https://doi.org/10.1038/ng1253
  2. Cagnazzo, M., M. F. te Pas, J. Priem, A. A. de Wit, M. H. Pool, R. Davoli and V. Russo. 2006. Comparison of prenatal muscle tissue expression profiles of two pig breeds differing in muscle characteristics. J. Anim. Sci. 84:1-10. https://doi.org/10.2527/2006.8411
  3. Bartel, D. P. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281-297. https://doi.org/10.1016/S0092-8674(04)00045-5
  4. Ambros, V. 2003. MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell 113:673-676. https://doi.org/10.1016/S0092-8674(03)00428-8
  5. Swatland, H. J. 1994. Structure and development of meat animals and poultry. Technomic Publishing Company. Inc. Pennsylvania. pp. 495-563.
  6. Shi, R. and V. L. Chiang. 2005. Facile means for quantifying microRNA expression by real-time PCR. Bio Techniques. 39:519-525. https://doi.org/10.2144/000112010
  7. Sawera, M., J. Gorodkin, S. Cirera and M. Fredholm. 2005. Mapping and expression studies of the mir17-92 cluster on pig chromosome 11. Mamm Genome. 16:594-598. https://doi.org/10.1007/s00335-005-0013-3
  8. Nam-Kuk, K., J-H. Lim, M-J. Song, O-H. Kim, B-Y. Park, M-J. Kim, I-H. Hwang and C-S. Lee. 2007. Developmental proteomic profiling of porcine skeletal muscle during postnatal development. Asian-Aust. J. Anim. Sci. 20:1612-1617. https://doi.org/10.5713/ajas.2007.1612
  9. Olsen, P. H. and V. Ambros. 1999. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev. Biol. 216:671-680. https://doi.org/10.1006/dbio.1999.9523
  10. Kim, S. M., M. Y. Park, K. S. Swo, D. H. Yoon, H-G. Lee, Y. J. Choi and S. H. Kim. 2006. Analysis of differentially expressed proteins in bovine longissimus dorsi and biceps femores muscles . Asian-Aust. J. Anim. Sci. 19:1496-1502. https://doi.org/10.5713/ajas.2006.1496
  11. Lee, R. C., R. L. Feinbaum and V. Ambros. 1993. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 75:843-854. https://doi.org/10.1016/0092-8674(93)90529-Y
  12. Kim, H. J., X. S. Cui, E. J. Kim, W. J. Kim and N. H. Kim. 2006. New porcine microRNA genes found by homology search. Genome. 49:1283-1286. https://doi.org/10.1139/G06-120
  13. Giraldez, A. J., R. M. Cinalli, M. E. Glasner, A. J. Enright, J. M. Thomson, S. Baskerville, S. M. Hammond, D. P. Bartel and A. F. Schier. 2005. MicroRNAs regulate brain morphogenesis in zebrafish. Sci. 308:833-83. https://doi.org/10.1126/science.1109020
  14. Zhao, S. H., J. Yu, B. Liu, B. Fan, M. J. Zhu, T. A. Xiong, M. Yu and K. Li. 2005. The porcine FBXO32 gene: map assignment, SNP detection and tissue expression. Anim. Genet. 36:451-452. https://doi.org/10.1111/j.1365-2052.2005.01339.x
  15. Zhao, S. H., D. Kuhar, J. K. Lunney, H. D. Dawson, C. Guidry, J. Uthe, S. Bearson, J. Recknor, D. Nettleton and C. K. Tuggle. 2006. Gene expression profiling in salmonella choleraesuisinfected porcine lung using a long oligonucleotide microarray. Mamm Genome. 17:777-789. https://doi.org/10.1007/s00335-005-0155-3
  16. Zhao, S. H., D. Nettleton, W. Liu, C. Fitzsimmons, C. W. Ernst, N. E. Raney and C. K. Tuggle. 2003. Complementary DNA macroarray analyses of differential gene expression in porcine fetal and postnatal muscle. J. Anim. Sci. 81:2179-2188. https://doi.org/10.2527/2003.8192179x
  17. Wernersson, R., M. H. Schierup, F. G. Jorgensen, J. Gorodkin, F. Panitz, H. H. Staerfeldt, O. F. Christensen, T. Mailund, H. Hornshoj, A. Klein, J. Wang, B. Liu, S. Hu, W. Dong, W. Li, G. K. Wong, J. Yu, C. Bendixen, M. Fredholm, S. Brunak, H. Yang and L. Bolund. 2005. Pigs in sequence space: a 0.66X coverage pig genome survey based on shotgun sequencing. BMC Genomics. 6(1):70. https://doi.org/10.1186/1471-2164-6-70
  18. Xu, P., M. Guo and B. A. Hay. 2004. MicroRNAs and the regulation of cell death. Trends Genet. 20:617-624. https://doi.org/10.1016/j.tig.2004.09.010
  19. Te Pas, M. F., A. A. C. de Wit, J. Priem, M. Cagnazzo, R. Davoli, V. Russo and M. H. Pool. 2005. Transcriptome expression profiles in prenatal pigs in relation to myogenesis. J. Muscle Res. Cell Motil. 26:157-165. https://doi.org/10.1007/s10974-005-7004-6
  20. Tang, Z. L., Y. Li, P. Wan, X. P. Li, S. H. Zhao, B. Liu, B. Fan, M. J. Zhu, M. Yu and K. Li. 2007. Long SAGE analysis of skeletal muscle at three prenatal stages in Tongcheng and Landrace pigs. Genome Biol. 8(6):R115.1-R115.18. https://doi.org/10.1186/gb-2007-8-6-r115
  21. Chen, J. F., E. M. Mandel, J. M. Thomson, Q. Wu, T. E. Callis, S. M. Hammond, F. L. Conlon and D. Z. Wang. 2006. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat. Genet. 38:228-233. https://doi.org/10.1038/ng1725
  22. Chul, W. K., K. T. Chang, Y. H. Hong, W. Y. Jung, E. J. Kwon, K. K. Cho, K. H. Chung, B. W. Kim, J. G. Lee, J. S. Yeo, Y. S. Kang and Y. K. Joo. 2005. cDNA microarray analysis of the gene expression profile of wwine muscle. Asian-Aust. J. Anim. Sci. 18:1080-1087. https://doi.org/10.5713/ajas.2005.1080
  23. Esau, C., X. Kang, E. Peralta, E. Hanson, E. G. Marcusson, L. V. Ravichandran, Y. Sun, S. Koo, R. J. Perera, R. Jain, N. M. Dean, S. M. Freier, C. F. Bennett, B. Lollo and R. Griffey. 2004. MicroRNA-143 regulates adipocyte differentiation. J. Biol. Chem. 279:52361-52365. https://doi.org/10.1074/jbc.C400438200
  24. Eun, C., W. Y. Jung, E. J. Kwon, D. H. Park, K. H. Chung, K. K. Cho and C. W. Kim. 2007. Cloning and expression analysis of the subunit of porcine prolyl 4-hydroxylase. Asian-Aust. J. Anim. Sci. 20:1655-1661. https://doi.org/10.5713/ajas.2007.1655

Cited by

  1. Transcriptional profiling and miRNA-dependent regulatory network analysis of longissimus dorsi muscle during prenatal and adult stages in two distinct pig breeds vol.44, pp.4, 2013, https://doi.org/10.1111/age.12032
  2. MicroRNA expression profiles differ between primary myofiber of lean and obese pig breeds vol.12, pp.7, 2017, https://doi.org/10.1371/journal.pone.0181897
  3. Expression Profiling of Activin type IIB Receptor During Ontogeny in Broiler and Indigenous Chicken vol.28, pp.1, 2017, https://doi.org/10.1080/10495398.2016.1194287