Label-Free Molecular Imaging of Living Cells

  • Fujita, Katsumasa (Department of Applied Physics, Osaka University) ;
  • Smith, Nicholas Isaac (Department of Applied Physics, Osaka University)
  • Received : 2008.11.25
  • Accepted : 2008.11.28
  • Published : 2008.12.31

Abstract

Optical signals based on Raman scattering, coherent anti-Stokes Raman scattering (CARS), and harmonic generation can be used to image biological molecules in living cells without labeling. Both Raman scattering and CARS signals can be used to detect frequencies of molecular vibrations and to obtain the molecular distributions in samples. Second-harmonic optical signals can also be generated in structured arrays of noncentrosymmetric molecules and can be used to detect structured aggregates of proteins, such as, collagen, myosin and tubulin. Since labeling techniques using chemical and biological reactions may cause undesirable changes in the sample, label-free molecular imaging techniques are essential for observation of living samples.

Keywords

coherent anti-Stokes Raman scattering;laser microscopy;molecular imaging;Raman scattering;second-harmonic generation;spectroscopy

References

  1. Betzig, E., Patterson, G.H., Sougrat, R., Lindwasser, OW., Olenych, S., Bonifacino, J.S., Davidson, MW., Lippincott-Schwartz, J., and Hess, H.F. (2006). Imaging intracellular fluorescecnet proteins at nanometer resolution. Science 313, 1642-1645 https://doi.org/10.1126/science.1127344
  2. Duncan, M.D., Reintjes, J., and Manuccia, 1.J. (1982). Scanning coherent anti-Stokes Raman microscope. Opt. Lett. 7, 350-352 https://doi.org/10.1364/OL.7.000350
  3. Hell, SW., and Wichmann, J. (1994). Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19,780-782 https://doi.org/10.1364/OL.19.000780
  4. Nan, X., Cheng, J.-X., and Xie, X.S. (2003). Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy. J. Lipid Res. 44, 2202 https://doi.org/10.1194/jlr.D300022-JLR200
  5. Puppels, G.J., Mul, F.F.M., Otto, C., Greve, J., Nicoud, M.R., Jovin, D.JA, and Jovin, T.M. (1990). Studying single living cells and chromosomes by confocal Raman microspectroscopy. Nature 347,301-303 https://doi.org/10.1038/347301a0
  6. Puppels, G.J., Grond, M., and Grave, J. (1993). Direct imaging Raman microscop based on tunable wavelength excitation and narrow-band emission detection. Appl. Spectrosc. 47, 1256-1267 https://doi.org/10.1366/0003702934068017
  7. Scalfi-Happ, C., Jauss, A., Ibach, W., Hollricher,O., Fulda, S., Hauser, C., Steiner, R., and Ruck, A. (2007). Confocal Raman microscopy as a diagnostic tool for investigation of living neuroblastoma tumour cells. Med. Las. Appl. 22, 157-164 https://doi.org/10.1016/j.mla.2007.09.007
  8. Spiro, T.G., and Strekas, T.C. (1972). Resonance Raman spectra of Heme proteins. Effects of oxidation and spin state. J. Am. Chem. Soc. 96, 338-345 https://doi.org/10.1021/ja00809a004
  9. Uzunbajakava, N., Lenferink, A., Kraan, V.E., Vrensen, G., Greve, J., and Otto, C. (2003). Nonresonant confocal Raman imaging of DNA and protein distribution in apoptotic cells. Biophys. J. 84, 3968-3981 https://doi.org/10.1016/S0006-3495(03)75124-8
  10. Volkmer, A., Book, L.D., and Xie, X.S. (2002). Time-resolved coherent anti-Stokes Raman scattering: imaging based on Raman free induction decay. Appl. Phys. Lett. 80, 1505-1507 https://doi.org/10.1063/1.1456262
  11. Yamanaka, M., Kawano, S., Fujita, K., Smith, N.I., and Kawata, S. (2008). Beyond the diffraction-limit biological imaging by saturated excitation microscopy. J. Biomed. Opt. 13,050507 https://doi.org/10.1117/1.2992595
  12. Boyd, RW. (2003). Nonlinear Optics Second Edition. Academic Press New York
  13. Evans, C.L., Potma, E.O., and Xie, X.S. (2004). Coherent anti-Stokes Raman scattering spectral interferometry: determination of the real and imaginary components of nonlinear susceptibility X (3) for vibrational microscopy. Opt. Lett. 29, 2923-2925 https://doi.org/10.1364/OL.29.002923
  14. Evans, C.L., Xu, X., Kesari, S., Xie, X.S., Wong, S.T.C., Young, G.S. (2007). Chemically-selective imaging of brain structures with CARS microscopy. Opt. Exp. 15,12076-12087 https://doi.org/10.1364/OE.15.012076
  15. Hashimoto, M., and Araki, 1. (2001). Three-dimensional transfer functions of coherent anti-Stokes Raman scattering microscopy. J. Opt. Soc. Am. A 18,771-776 https://doi.org/10.1364/JOSAA.18.000771
  16. Dombeck, DA, Blanchard-Desce, M., and Webb, WW. (2004). Optical recording of action potentials with second-harmonic generation microscopy. J. Neurosci. 24, 999-1003 https://doi.org/10.1523/JNEUROSCI.4840-03.2004
  17. Gustafsson, M.G.L. (2005). Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. USA 102, 1308113086
  18. Hamada, K., Fujita, K., Smith, N.I., Kobayashi, M., Inouye, Y., and Kawata, S. (2008). Raman microscopy for dynamic molecular imaging of living cells. J. Biomed. Opt. 13, 044027 https://doi.org/10.1117/1.2952192
  19. Campagnola, P.J., Millard, A.C., Terasaki, M., Hoppe, P.E., Malone, C.J., and Mohler, WA (2002). Three-dimensional highresolution second-harmonic imaging of endogenous protein structural proteins in biological tissues. Biophysiology 82, 493-508 https://doi.org/10.1016/S0006-3495(02)75414-3
  20. Denk, W., Strickler J.H., and Webb, W.w. (1990). Two-photon laser scanning fluorescence microscopy. Science 248, 73-76 https://doi.org/10.1126/science.2321027
  21. Zumbusch, A., Holtom, G.R., and Xie, X.S. (1999). Threedimensional vibrational imaging by coherent anti-stokes Raman scattering. Phy. Rev. Lett. 82, 4142 https://doi.org/10.1103/PhysRevLett.82.4142
  22. Cheng J.-X., Book L.D., and Xie, X.S. (2001). Polarization coherent anti-Stokes Raman scattering microscopy. Opt. Lett. 26, 1341-1343 https://doi.org/10.1364/OL.26.001341
  23. Boulesteix, 1., Beaurepaire, E., Sauviat, M., and Schanne-Klein, M. (2004). Second-harmonic microscopy of unstained living cardiac myocytes: measurements of sarcomere length with 20-nm accuracy. Opt. Lett. 29, 2031-2033 https://doi.org/10.1364/OL.29.002031
  24. Ling, J., Weitman, S.D., Miller, MA, Moore, RV., and Bovik, A.C. (2002). Direct raman imaging techniques for studying the subcellular distribution of a drug. Appl. Opt. 41, 6006-6017 https://doi.org/10.1364/AO.41.006006
  25. Fujita, K., Kobayashi, M., Kawano, S., Yamanaka, M., and Kawata, S. (2007). High-resolution confocal microscopy by saturated excitation of fluorescence. Phys. Rev. Lett. 99, 228105 https://doi.org/10.1103/PhysRevLett.99.228105
  26. Volkmer, A., Cheng, .Lx., and Xie, X.S. (2001). Vibrational imaging with high sensitivity via epidetected coherent anti Stokes Raman scattering microscopy. Phys. Rev. Lett. 87,023901 https://doi.org/10.1103/PhysRevLett.87.023901
  27. Rust, M.J., Bates, M., and Zhauang, X. (2006). Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793-796 https://doi.org/10.1038/nmeth929
  28. Matthaus, C., Chernenko, T., Newmark, JA, Warner, C.M., and Diem, M. (2007). Label-free detection of mitochondrial distribution in cells by nonresonant Raman microspectroscopy. Biophys. J. 93, 668-673 https://doi.org/10.1529/biophysj.106.102061
  29. Huang, Y.-S., Kawashima, T., Yamamoto, M., Ogawa,T., and Hamaguchi, H. (2004). Raman spectroscopic signature of life in a living yeast cell. J. Raman Spectro. 35, 525-526 https://doi.org/10.1002/jrs.1219
  30. Cheng, J-X., and Xie, X.S. (2004). Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications. J. Phys. Chem. B 108,827-840 https://doi.org/10.1021/jp035693v
  31. Oyamada, Y., Zhou, W., Oyamada, H., Takamatsu, 1., and Oyamada, M. (2002). Dominant-negative connexin43-EGFP inhibits calcium-transient synchronization of primary neonatal rat cardiomyocytes. Exp. Cell Res. 273, 85-94 https://doi.org/10.1006/excr.2001.5411
  32. Manen, H-K, Kraan, Y.M., Roos, D., and Otto, C. (2004). Intercellular chemical imaging of heme-containing enzymes involved in innate immunity using resonance Raman microscopy. J. Phys. Chem. B 108,18762-18771 https://doi.org/10.1021/jp046955b
  33. Matthaus, C., Boydston-white, S., Miljkovic, M., Romeo, M., and Diem, M. (2006). Raman and infrared microspectral imaging of mitotic cells. Appl. Spectrosc. 60, 1-8 https://doi.org/10.1366/000370206775382758
  34. Nan, X., Potma, E.O., and Xie, X.S. (2006). Nonperturbative chemical imaging of organelle transport in living cells with coherent anti-Stokes Raman scattering microscopy. Biophys. J. 91, 728-735 https://doi.org/10.1529/biophysj.105.074534
  35. Wurpel, GW.H., Schins, J.M., and Muller, M. (2002). Chemical specificity in three-dimensional imaging with multiplex coherent anti-Stokes Raman scattering microscopy. Opt. Lett., 27, 1093-1095 https://doi.org/10.1364/OL.27.001093
  36. Evans, C.L., Potma, E.O., Puoris'haag, M., Cote, D., Lin, C.P., and Xie, X.S. (2005). Chemical imaging of tissue in vivo with videorate coherent anti-Stokes Raman scattering microscopy. Proc. Natl. Acad. Sci. USA 102, 16807-16812
  37. Harada, Y., Ota, 1., Dai, P., Yamaoka, Y., Hamada, K., Fujita, K., and Takamatsu, 1. (2008). Imaging of anticancer agent distribution by a slit-scanning Raman microscope. Proc. SPIE 6853, 685308
  38. Hell, SW. (2007). Far-field optical nanoscopy. Science 316, 1153-1158 https://doi.org/10.1126/science.1137395
  39. Manen, H-K, Kraan, Y.M., Roos, D., and Otto, C. (2005). Singlecell Raman and fluorescence microscopy reveal the association of lipid bodies with phagosomes in leukocytes. Proc. Nat. Acad. Sci. USA 102, 10159-10164
  40. Campagnola, P.J., and Loew, L.M. (2003). Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms. Nat. Biotechnol. 21, 1356-1360 https://doi.org/10.1038/nbt894