Label-Free Molecular Imaging of Living Cells

  • Fujita, Katsumasa (Department of Applied Physics, Osaka University) ;
  • Smith, Nicholas Isaac (Department of Applied Physics, Osaka University)
  • Received : 2008.11.25
  • Accepted : 2008.11.28
  • Published : 2008.12.31


Optical signals based on Raman scattering, coherent anti-Stokes Raman scattering (CARS), and harmonic generation can be used to image biological molecules in living cells without labeling. Both Raman scattering and CARS signals can be used to detect frequencies of molecular vibrations and to obtain the molecular distributions in samples. Second-harmonic optical signals can also be generated in structured arrays of noncentrosymmetric molecules and can be used to detect structured aggregates of proteins, such as, collagen, myosin and tubulin. Since labeling techniques using chemical and biological reactions may cause undesirable changes in the sample, label-free molecular imaging techniques are essential for observation of living samples.


coherent anti-Stokes Raman scattering;laser microscopy;molecular imaging;Raman scattering;second-harmonic generation;spectroscopy


  1. Betzig, E., Patterson, G.H., Sougrat, R., Lindwasser, OW., Olenych, S., Bonifacino, J.S., Davidson, MW., Lippincott-Schwartz, J., and Hess, H.F. (2006). Imaging intracellular fluorescecnet proteins at nanometer resolution. Science 313, 1642-1645
  2. Duncan, M.D., Reintjes, J., and Manuccia, 1.J. (1982). Scanning coherent anti-Stokes Raman microscope. Opt. Lett. 7, 350-352
  3. Hell, SW., and Wichmann, J. (1994). Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19,780-782
  4. Nan, X., Cheng, J.-X., and Xie, X.S. (2003). Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy. J. Lipid Res. 44, 2202
  5. Puppels, G.J., Mul, F.F.M., Otto, C., Greve, J., Nicoud, M.R., Jovin, D.JA, and Jovin, T.M. (1990). Studying single living cells and chromosomes by confocal Raman microspectroscopy. Nature 347,301-303
  6. Puppels, G.J., Grond, M., and Grave, J. (1993). Direct imaging Raman microscop based on tunable wavelength excitation and narrow-band emission detection. Appl. Spectrosc. 47, 1256-1267
  7. Scalfi-Happ, C., Jauss, A., Ibach, W., Hollricher,O., Fulda, S., Hauser, C., Steiner, R., and Ruck, A. (2007). Confocal Raman microscopy as a diagnostic tool for investigation of living neuroblastoma tumour cells. Med. Las. Appl. 22, 157-164
  8. Spiro, T.G., and Strekas, T.C. (1972). Resonance Raman spectra of Heme proteins. Effects of oxidation and spin state. J. Am. Chem. Soc. 96, 338-345
  9. Uzunbajakava, N., Lenferink, A., Kraan, V.E., Vrensen, G., Greve, J., and Otto, C. (2003). Nonresonant confocal Raman imaging of DNA and protein distribution in apoptotic cells. Biophys. J. 84, 3968-3981
  10. Volkmer, A., Book, L.D., and Xie, X.S. (2002). Time-resolved coherent anti-Stokes Raman scattering: imaging based on Raman free induction decay. Appl. Phys. Lett. 80, 1505-1507
  11. Yamanaka, M., Kawano, S., Fujita, K., Smith, N.I., and Kawata, S. (2008). Beyond the diffraction-limit biological imaging by saturated excitation microscopy. J. Biomed. Opt. 13,050507
  12. Boyd, RW. (2003). Nonlinear Optics Second Edition. Academic Press New York
  13. Evans, C.L., Potma, E.O., and Xie, X.S. (2004). Coherent anti-Stokes Raman scattering spectral interferometry: determination of the real and imaginary components of nonlinear susceptibility X (3) for vibrational microscopy. Opt. Lett. 29, 2923-2925
  14. Evans, C.L., Xu, X., Kesari, S., Xie, X.S., Wong, S.T.C., Young, G.S. (2007). Chemically-selective imaging of brain structures with CARS microscopy. Opt. Exp. 15,12076-12087
  15. Hashimoto, M., and Araki, 1. (2001). Three-dimensional transfer functions of coherent anti-Stokes Raman scattering microscopy. J. Opt. Soc. Am. A 18,771-776
  16. Dombeck, DA, Blanchard-Desce, M., and Webb, WW. (2004). Optical recording of action potentials with second-harmonic generation microscopy. J. Neurosci. 24, 999-1003
  17. Gustafsson, M.G.L. (2005). Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. USA 102, 1308113086
  18. Hamada, K., Fujita, K., Smith, N.I., Kobayashi, M., Inouye, Y., and Kawata, S. (2008). Raman microscopy for dynamic molecular imaging of living cells. J. Biomed. Opt. 13, 044027
  19. Campagnola, P.J., Millard, A.C., Terasaki, M., Hoppe, P.E., Malone, C.J., and Mohler, WA (2002). Three-dimensional highresolution second-harmonic imaging of endogenous protein structural proteins in biological tissues. Biophysiology 82, 493-508
  20. Denk, W., Strickler J.H., and Webb, W.w. (1990). Two-photon laser scanning fluorescence microscopy. Science 248, 73-76
  21. Zumbusch, A., Holtom, G.R., and Xie, X.S. (1999). Threedimensional vibrational imaging by coherent anti-stokes Raman scattering. Phy. Rev. Lett. 82, 4142
  22. Cheng J.-X., Book L.D., and Xie, X.S. (2001). Polarization coherent anti-Stokes Raman scattering microscopy. Opt. Lett. 26, 1341-1343
  23. Boulesteix, 1., Beaurepaire, E., Sauviat, M., and Schanne-Klein, M. (2004). Second-harmonic microscopy of unstained living cardiac myocytes: measurements of sarcomere length with 20-nm accuracy. Opt. Lett. 29, 2031-2033
  24. Ling, J., Weitman, S.D., Miller, MA, Moore, RV., and Bovik, A.C. (2002). Direct raman imaging techniques for studying the subcellular distribution of a drug. Appl. Opt. 41, 6006-6017
  25. Fujita, K., Kobayashi, M., Kawano, S., Yamanaka, M., and Kawata, S. (2007). High-resolution confocal microscopy by saturated excitation of fluorescence. Phys. Rev. Lett. 99, 228105
  26. Volkmer, A., Cheng, .Lx., and Xie, X.S. (2001). Vibrational imaging with high sensitivity via epidetected coherent anti Stokes Raman scattering microscopy. Phys. Rev. Lett. 87,023901
  27. Rust, M.J., Bates, M., and Zhauang, X. (2006). Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793-796
  28. Matthaus, C., Chernenko, T., Newmark, JA, Warner, C.M., and Diem, M. (2007). Label-free detection of mitochondrial distribution in cells by nonresonant Raman microspectroscopy. Biophys. J. 93, 668-673
  29. Huang, Y.-S., Kawashima, T., Yamamoto, M., Ogawa,T., and Hamaguchi, H. (2004). Raman spectroscopic signature of life in a living yeast cell. J. Raman Spectro. 35, 525-526
  30. Cheng, J-X., and Xie, X.S. (2004). Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications. J. Phys. Chem. B 108,827-840
  31. Oyamada, Y., Zhou, W., Oyamada, H., Takamatsu, 1., and Oyamada, M. (2002). Dominant-negative connexin43-EGFP inhibits calcium-transient synchronization of primary neonatal rat cardiomyocytes. Exp. Cell Res. 273, 85-94
  32. Manen, H-K, Kraan, Y.M., Roos, D., and Otto, C. (2004). Intercellular chemical imaging of heme-containing enzymes involved in innate immunity using resonance Raman microscopy. J. Phys. Chem. B 108,18762-18771
  33. Matthaus, C., Boydston-white, S., Miljkovic, M., Romeo, M., and Diem, M. (2006). Raman and infrared microspectral imaging of mitotic cells. Appl. Spectrosc. 60, 1-8
  34. Nan, X., Potma, E.O., and Xie, X.S. (2006). Nonperturbative chemical imaging of organelle transport in living cells with coherent anti-Stokes Raman scattering microscopy. Biophys. J. 91, 728-735
  35. Wurpel, GW.H., Schins, J.M., and Muller, M. (2002). Chemical specificity in three-dimensional imaging with multiplex coherent anti-Stokes Raman scattering microscopy. Opt. Lett., 27, 1093-1095
  36. Evans, C.L., Potma, E.O., Puoris'haag, M., Cote, D., Lin, C.P., and Xie, X.S. (2005). Chemical imaging of tissue in vivo with videorate coherent anti-Stokes Raman scattering microscopy. Proc. Natl. Acad. Sci. USA 102, 16807-16812
  37. Harada, Y., Ota, 1., Dai, P., Yamaoka, Y., Hamada, K., Fujita, K., and Takamatsu, 1. (2008). Imaging of anticancer agent distribution by a slit-scanning Raman microscope. Proc. SPIE 6853, 685308
  38. Hell, SW. (2007). Far-field optical nanoscopy. Science 316, 1153-1158
  39. Manen, H-K, Kraan, Y.M., Roos, D., and Otto, C. (2005). Singlecell Raman and fluorescence microscopy reveal the association of lipid bodies with phagosomes in leukocytes. Proc. Nat. Acad. Sci. USA 102, 10159-10164
  40. Campagnola, P.J., and Loew, L.M. (2003). Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms. Nat. Biotechnol. 21, 1356-1360