CD4+CD25+ Regulatory T Cells Selectively Diminish Systemic Autoreactivity in Arthritic K/BxN Mice

  • Kang, Sang Mee (Department of Anatomy and Cell Biology, College of Medicine, Hanyang University) ;
  • Jang, Eunkyeong (Department of Anatomy and Cell Biology, College of Medicine, Hanyang University) ;
  • Paik, Doo-Jin (Department of Anatomy and Cell Biology, College of Medicine, Hanyang University) ;
  • Jang, Young-Ju (Laboratory of Immunology, Institute for Medical Science, Ajou University) ;
  • Youn, Jeehee (Department of Anatomy and Cell Biology, College of Medicine, Hanyang University)
  • Received : 2007.06.07
  • Accepted : 2007.09.04
  • Published : 2008.02.29

Abstract

Although the arthritis symptoms observed in the K/BxN model have been shown to be dependent on the functions of T and B cells specific to the self antigen glucose-6-phosphate isomerase, less is known about the in vivo roles of $CD4^{+}CD25^{+}$ regulatory T($T_{reg}$) cells in the pathology of K/BxN mice. We determined the quantitative and functional characteristics of the $T_{reg}$ cells in K/BxN mice. These mice contained a higher percentage of $Foxp3^+\;T_{reg}$ cells among the $CD4^+$ T cells than their BxN littermates. These $T_{reg}$ cells were anergic and efficiently suppressed the proliferation of $na\ddot{i}ve$ $CD4^+$ T cells and cytokine production by effector $CD4^+$ T cells in vitro. Antibody-mediated depletion of $CD25^+$ cells caused K/BxN mice to develop multi-organ inflammation and autoantibody production, while the symptoms of arthritis were not affected. These results demonstrate that despite the inability of the $T_{reg}$ cells to suppress arthritis development, they play a critical role protecting the arthritic mice from systemic expansion of autoimmunity.

Keywords

Autoimmunity;K/BxN Model;Regulatory T Cells;Rheumatoid Arthritis

Acknowledgement

Supported by : MOST/KOSEF, Ministry of Health & Welfare

References

  1. Cao, D., van Vollenhoven, R., Klareskog, L., Trollmo, C., and Malmstrom, V. (2004). $CD25^{bright}CD4^{+}$ regulatory T cells are enriched in inflamed joints of patients with chronic rheumatic disease. Arthritis Res. Ther. 6, R335-R346 https://doi.org/10.1186/ar1192
  2. Jang, E., Kim, H.R., Cho, S.H., Paik, D.J., Kim, J.M., Lee, S.K., and Youn, J. (2006). Prevention of spontaneous arthritis by inhibiting homeostatic expansion of autoreactive $CD4^{+}$ T cells in the K/BxN mouse model. Arthritis Rheum. 54, 492-498 https://doi.org/10.1002/art.21567
  3. Matsumoto, I., Staub, A., Benoist, C., and Mathis, D. (1999). Arthritis provoked by linked T and B cell recognition of a glycolytic enzyme. Science 286, 1732-1735 https://doi.org/10.1126/science.286.5445.1732
  4. Morgan, M.E., Sutmuller, R.P., Witteveen, H.J., van Duivenvoorde, L.M., Zanelli, E., Melief, C.J., Snijders, A., Offringa, R., de Vries, R.R., and Toes, R.E. (2003). CD25+ cell depletion hastens the onset of severe disease in collagen-induced arthritis. Arthritis Rheum. 48, 1452-1460 https://doi.org/10.1002/art.11063
  5. Ji, H., Ohmura, K., Mahmood, U., Lee, D.M., Hofhuis, F.M., Boackle, S.A., Takahashi, K., Holers, V.M., Walport, M., Gerard, C., et al. (2002). Arthritis critically dependent on innate immune system players. Immunity 16, 157-168 https://doi.org/10.1016/S1074-7613(02)00275-3
  6. Bardos, T., Czipri, M., Vermes, C., Finnegan, A., Mikecz, K., and Zhang, J. (2003). $Ca4^{+}CD25^{+}$ immunoregulatory T cells may not be involved in controlling autoimmune arthritis. Arthritis Res. Ther. 5, 106-1013
  7. van Amelsfort, J.M.R., Jacobs, K.M.G., Bijlsma, J.W.J., Lafeber, F.P.J.G., and Taams, L.S. (2004). CD4+CD25+ regulatory T cells in RA. Arthritis Rheum. 50, 2775-2785 https://doi.org/10.1002/art.20499
  8. Ehrenstein, M.R., Evans, J.G., Singh, A., Moore, S., Warnes, G., Isenberg, D.A., and Mauri, C. (2004). Compromised function of regulatory T cells in RA and reversal by anti-TNF$\alpha$ therapy. J. Exp. Med. 200, 277-285 https://doi.org/10.1084/jem.20040165
  9. Viglietta, V., Baecher-Allan, C., Weiner, H.L., and Hafler, D.A. (2004). Loss of functional suppression by $CD4^{+}CD25^{+}$ regulatory T cells in patients with multiple sclerosis. J. Exp. Med. 199, 971-979 https://doi.org/10.1084/jem.20031579
  10. Wu, A.J., Hua, H., Munson, S.H., and McDevitt, H.O. (2002). Tumor necrosis factor-$\alpha$ regulation of $CD4^{+}CD25^{+}$ T cell levels in NOD mice. Proc. Natl. Acad. Sci. USA 99, 12287-12292
  11. Kouskoff, V., Korganow, A.S., Duchatelle, V., Degott, C., Benoist, C., and Mathis, D. (1996). Organ-specific disease provoked by systemic autoimmunity. Cell 87, 811-822 https://doi.org/10.1016/S0092-8674(00)81989-3
  12. Park, J.S., Kim, Y.T., Chung, H.Y., Baek, K., and Jang, Y.J. (2001). Primary structures and chain dominance of anti-DNA antibodies. Mol. Cells 11, 55-63
  13. Binstadt, B.A., Patel, P.R., Alencar, H., Nigrovic, P.A., Lee, D.M., Mahmood, U., Weissleder, R., Mathis, D., and Benoist, C. (2006). Particularities of the vasculature can promote the organ specificity of autoimmune attack. Nat. Immunol. 7, 284-292 https://doi.org/10.1038/ni1306
  14. Kriegel, M.A., Lohmann, T., Gabler, C., Blank, N., Kalden, J.R., and Lorenz, H.M. (2004). Defective suppressor function of human $CD4^{+}CD25^{+}$ regulatory T cells in autoimmune polyglandular syndrome type II. J. Exp. Med. 199, 1285-1291 https://doi.org/10.1084/jem.20032158
  15. Nguyen, L.T, Jacobs, J., Mathis, D., and Benoist, C. (2007). Where FoxP3 dependent regulatory T cells impinge on the development of inflammatory arthritis. Arthritis Rheum. 56, 509-520 https://doi.org/10.1002/art.22272
  16. Shih, F.F., Mandik-Nayak, L., Wipke, B.T., and Allen, P.M. (2004). Massive thymic deletion results in systemic autoimmunity through elimination of $CD4^{+}CD25^{+}$ T regulatory cells. J. Exp. Med. 199, 323-335 https://doi.org/10.1084/jem.20031137
  17. Shevach, E.M. (2002). $CD4^{+}CD25^{+}$ suppressor T cells: more questions than answers. Nat. Rev. Immunol. 2, 389-400
  18. Miyara, M. and Sakaguchi, S. (2007). Natural regulatory T cells: mechanisms of suppression. Trends Mol. Med. 13, 108-116 https://doi.org/10.1016/j.molmed.2007.01.003
  19. Nishimura, E., Sakihama, T., Setoguchi, R., Tanaka, K., and Sakaguchi, S. (2004). Induction of antigen-specific immunologic tolerance by in vivo and in vitro antigen-specific expansion of naturally arising $Foxp3^{+}CD25^{+}CD4^{+}$ regulatory T cells. Int. Immunol. 16, 1189-1201 https://doi.org/10.1093/intimm/dxh122
  20. Ruprecht, C.R., Gattorno, M., Ferlito, F., Gregorio, A., Martini, A., Lanzavecchia, A., and Sallusto, F. (2005). Coexpression of CD25 and CD27 identifies $Foxp3^{+}$ regulatory T cells in inflamed synovia. J. Exp. Med. 201, 1793-1803 https://doi.org/10.1084/jem.20050085
  21. Salomon, B., Lenschow, D.J., Rhee, L., Ashourian, N., Singh, B., Sharpe, A., and Bluestone, J.A. (2000). B7/CD28 costimulation is essential for the homeostasis of the $CD4^{+}CD25^{+}$ immunoregulatory T cells that control autoimmune diabetes. Immunity 12, 431-440 https://doi.org/10.1016/S1074-7613(00)80195-8