Longevity Genes: Insights from Calorie Restriction and Genetic Longevity Models

  • Shimokawa, Isao (Department of Investigative Pathology, Unit of Basic Medical Science, Graduate School of Biomedical Sciences, Nagasaki University) ;
  • Chiba, Takuya (Department of Investigative Pathology, Unit of Basic Medical Science, Graduate School of Biomedical Sciences, Nagasaki University) ;
  • Yamaza, Haruyoshi (Department of Investigative Pathology, Unit of Basic Medical Science, Graduate School of Biomedical Sciences, Nagasaki University) ;
  • Komatsu, Toshimitsu (Department of Investigative Pathology, Unit of Basic Medical Science, Graduate School of Biomedical Sciences, Nagasaki University)
  • Received : 2008.09.13
  • Accepted : 2008.09.16
  • Published : 2008.11.30


In this review, we discuss the genes and the related signal pathways that regulate aging and longevity by reviewing recent findings of genetic longevity models in rodents in reference to findings with lower organisms. We also paid special attention to the genes and signals mediating the effects of calorie restriction (CR), a powerful intervention that slows the aging process and extends the lifespan in a range of organisms. An evolutionary view emphasizes the roles of nutrient-sensing and neuroendocrine adaptation to food shortage as the mechanisms underlying the effects of CR. Genetic and non-genetic interventions without CR suggest a role for single or combined hormonal signals that partly mediate the effect of CR. Longevity genes fall into two categories, genes relevant to nutrient-sensing systems and those associated with mitochondrial function or redox regulation. In mammals, disrupted or reduced growth hormone (GH)-insulin-like growth factor (IGF)-1 signaling robustly favors longevity. CR also suppresses the GH-IGF-1 axis, indicating the importance of this signal pathway. Surprisingly, there are very few longevity models to evaluate the enhanced anti-oxidative mechanism, while there is substantial evidence supporting the oxidative stress and damage theory of aging. Either increased or reduced mitochondrial function may extend the lifespan. The role of redox regulation and mitochondrial function in CR remains to be elucidated.


calorie restriction;longevity gene;mitochondria;neuroendocrine;nutrients


Supported by : Japan Society for the Promotion of Science


  1. Bluher, M., Kahn, B.B., and Kahn, C.R. (2003). Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 299, 572-574 https://doi.org/10.1126/science.1078223
  2. Bluher, M., Patti, M.E., Gesta, S., Kahn, B.B., and Kahn, C.R. (2004). Intrinsic heterogeneity in adipose tissue of fat-specific insulin receptor knock-out mice is associated with differences in patterns of gene expression. J. Biol. Chem. 279, 31891-31901 https://doi.org/10.1074/jbc.M404569200
  3. Brown-Borg, H.M., Borg, K.E., Meliska, C.J., and Bartke, A. (1996). Dwarf mice and the ageing process. Nature 384, 33
  4. Holliday, R. (1989). Food, reproduction and longevity: is the extended lifespan of calorie-restricted animals an evolutionary adaptation? Bioessays 10, 125-127 https://doi.org/10.1002/bies.950100408
  5. Kaeberlein, M., and Powers, R.W., 3rd. (2007). Sir2 and calorie restriction in yeast: a skeptical perspective. Ageing Res. Rev. 6, 128-140 https://doi.org/10.1016/j.arr.2007.04.001
  6. Kaestner, K.H. (2000). The hepatocyte nuclear factor 3 (HNF3 or FOXA) family in metabolism. Trends Endocrinol. Metab. 11, 281-285 https://doi.org/10.1016/S1043-2760(00)00271-X
  7. Kamei, Y., Miura, S., Suzuki, M., Kai, Y., Mizukami, J., Taniguchi, T., Mochida, K., Hata, T., Matsuda, J., Aburatani, H., et al. (2004). Skeletal muscle FOXO1 (FKHR) transgenic mice have less skeletal muscle mass, down-regulated Type I (slow twitch/red muscle) fiber genes, and impaired glycemic control. J. Biol. Chem. 279, 41114-41123 https://doi.org/10.1074/jbc.M400674200
  8. Lin, S.J., Kaeberlein, M., Andalis, A.A., Sturtz, L.A., Defossez, P.A., Culotta, V.C., Fink, G.R., and Guarente, L. (2002). Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 418, 344-348 https://doi.org/10.1038/nature00829
  9. Liu, X., Jiang, N., Hughes, B., Bigras, E., Shoubridge, E., and Hekimi, S. (2005). Evolutionary conservation of the clk-1-dependent mechanism of longevity: loss of mclk1 increases cellular fitness and lifespan in mice. Genes Dev. 19, 2424-2434 https://doi.org/10.1101/gad.1352905
  10. Michalkiewicz, M., Knestaut, K.M., Bytchkova, E.Y., and Michalkiewicz, T. (2003). Hypotension and reduced catecholamines in neuropeptide Y transgenic rats. Hypertension 41, 1056-1062 https://doi.org/10.1161/01.HYP.0000066623.64368.4E
  11. Migliaccio, E., Mele, S., Salcini, A.E., Pelicci, G., Lai, K.M., Superti-Furga, G., Pawson, T., Di Fiore, P.P., Lanfrancone, L., and Pelicci, P.G. (1997). Opposite effects of the p52shc/p46shc and p66shc splicing isoforms on the EGF receptor-MAP kinase-fos signalling pathway. EMBO J. 16, 706-716 https://doi.org/10.1093/emboj/16.4.706
  12. Miskin, R., Tirosh, O., Pardo, M., Zusman, I., Schwartz, B., Yahav, S.,Dubnov, G., and Kohen, R. (2005). AlphaMUPA mice: a transgenic model for longevity induced by caloric restriction. Mech. Ageing Dev. 126, 255-261 https://doi.org/10.1016/j.mad.2004.08.018
  13. Nakae, J., Oki, M., and Cao, Y. (2008). The FoxO transcription factors and metabolic regulation. FEBS Lett. 582, 54-67 https://doi.org/10.1016/j.febslet.2007.11.025
  14. Neugebauer, R.C., Sippl, W., and Jung, M. (2008). Inhibitors of NAD+ dependent histone deacetylases (sirtuins). Curr. Pharm. Des. 14, 562-573 https://doi.org/10.2174/138161208783885380
  15. Ooka, H., and Shinkai, T. (1986). Effects of chronic hyperthyroidism on the lifespan of the rat. Mech. Ageing Dev. 33, 275-282 https://doi.org/10.1016/0047-6374(86)90052-7
  16. Ran, Q., Liang, H., Ikeno, Y., Qi, W., Prolla, T.A., Roberts, L.J., 2nd, Wolf, N., VanRemmen, H., and Richardson, A. (2007). Reduction in glutathione peroxidase 4 increases life span through increased sensitivity to apoptosis. J. Gerontol. A Biol. Sci. Med. Sci. 62, 932-942 https://doi.org/10.1093/gerona/62.9.932
  17. Shaw, R.J., and Cantley, L.C. (2006). Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 441, 424-430 https://doi.org/10.1038/nature04869
  18. Wei, M., Fabrizio, P., Hu, J., Ge, H., Cheng, C., Li, L., and Longo, V.D. (2008). Life span extension by calorie restriction depends on Rim15 and transcription factors downstream of Ras/PKA, Tor, and Sch9. PLoS Genet 4, e13 https://doi.org/10.1371/journal.pgen.0040013
  19. Yamamoto, M., Clark, J.D., Pastor, J.V., Gurnani, P., Nandi, A., Kurosu, H., Miyoshi, M., Ogawa, Y., Castrillon, D.H., Rosenblatt, K.P., et al. (2005). Regulation of oxidative stress by the anti-aging hormone klotho. J. Biol. Chem. 280, 38029-38034 https://doi.org/10.1074/jbc.M509039200
  20. Yamaza, H., Komatsu, T., Chiba, T., Toyama, H., To, K., Higami, Y., and Shimokawa, I. (2004). A transgenic dwarf rat model as a tool for the study of calorie restriction and aging. Exp. Gerontol. 39, 269-272 https://doi.org/10.1016/j.exger.2003.11.001
  21. Carvajal, C.C., Vercauteren, F., Dumont, Y., Michalkiewicz, M., and Quirion, R. (2004). Aged neuropeptide Y transgenic rats are resistant to acute stress but maintain spatial and non-spatial learning. Behav. Brain Res. 153, 471-480 https://doi.org/10.1016/j.bbr.2004.01.004
  22. Nelson, J.F. (1994). Neuroendocrine involvement in the retardation of aging by dietary restriction. In Modulation of Aging Processes by Dietary Restriction, B.P. Yu, ed. (Boca Raton, FL, USA: CRC Press, Inc.), pp. 37-55
  23. Bartke, A., Wright, J.C., Mattison, J.A., Ingram, D.K., Miller, R.A., and Roth, G.S. (2001). Extending the lifespan of long-lived mice. Nature 414, 412 https://doi.org/10.1038/35106646
  24. Longo, V.D., and Finch, C.E. (2003). Evolutionary medicine: from dwarf model systems to healthy centenarians? Science 299, 1342-1346 https://doi.org/10.1126/science.1077991
  25. Bluher, M., Michael, M.D., Peroni, O.D., Ueki, K., Carter, N., Kahn, B.B., and Kahn, C.R. (2002). Adipose tissue selective insulin receptor knockout protects against obesity and obesity-related glucose intolerance. Dev. Cell 3, 25-38 https://doi.org/10.1016/S1534-5807(02)00199-5
  26. Sabatino, F., Masoro, E.J., McMahan, C.A., and Kuhn, R.W. (1991). Assessment of the role of the glucocorticoid system in aging processes and in the action of food restriction. J. Gerontol. 46, B171-179 https://doi.org/10.1093/geronj/46.5.B171
  27. Hansen, M., Taubert, S., Crawford, D., Libina, N., Lee, S.J., and Kenyon, C. (2007). Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell 6, 95-110 https://doi.org/10.1111/j.1474-9726.2006.00267.x
  28. Shimokawa, I., and Higami, Y. (2001a). Leptin and anti-aging action of caloric restriction. J. Nutr. Health Aging 5, 43-48
  29. Tokunaga, C., Yoshino, K., and Yonezawa, K. (2004). mTOR integrates amino acid- and energy-sensing pathways. Biochem. Biophys. Res. Commun. 313, 443-446 https://doi.org/10.1016/j.bbrc.2003.07.019
  30. Dell'agnello, C., Leo, S., Agostino, A., Szabadkai, G., Tiveron, C., Zulian, A., Prelle, A., Roubertoux, P., Rizzuto, R., and Zeviani, M. (2007). Increased longevity and refractoriness to Ca(2+)-dependent neurodegeneration in Surf1 knockout mice. Hum. Mol. Genet. 16, 431-444 https://doi.org/10.1093/hmg/ddl477
  31. Kurosu, H., Yamamoto, M., Clark, J.D., Pastor, J.V., Nandi, A., Gurnani, P., McGuinness, O.P., Chikuda, H., Yamaguchi, M., Kawaguchi, H., et al. (2005). Suppression of aging in mice by the hormone Klotho. Science 309, 1829-1833 https://doi.org/10.1126/science.1112766
  32. Masoro, E.J. (2003). Subfield history: caloric restriction, slowing aging, and extending life. Sci. Aging Knowledge Environ. 2003, RE2
  33. Schriner, S.E., Linford, N.J., Martin, G.M., Treuting, P., Ogburn, C.E., Emond, M., Coskun, P.E., Ladiges, W., Wolf, N., Van Remmen, H., et al. (2005). Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308, 1909-1911 https://doi.org/10.1126/science.1106653
  34. Stenmark, P., Grunler, J., Mattsson, J., Sindelar, P.J., Nordlund, P., and Berthold, D.A. (2001). A new member of the family of di-iron carboxylate proteins. Coq7 (clk-1), a membrane-bound hydroxylase involved in ubiquinone biosynthesis. J. Biol. Chem. 276, 33297-33300 https://doi.org/10.1074/jbc.C100346200
  35. Taguchi, A., and White, M.F. (2008). Insulin-like signaling, nutrient homeostasis, and life span. Annu. Rev. Physiol. 70, 191-212 https://doi.org/10.1146/annurev.physiol.70.113006.100533
  36. Shimokawa, I., and Higami, Y. (2001b). Leptin signaling and aging: insight from caloric restriction. Mech. Ageing Dev. 122, 1511-1519 https://doi.org/10.1016/S0047-6374(01)00284-6
  37. Stewart, J.W., Koehler, K., Jackson, W., Hawley, J., Wang, W., Au, A., Myers, R., and Birt, D.F. (2005). Prevention of mouse skin tumor promotion by dietary energy restriction requires an intact adrenal gland and glucocorticoid supplementation restores inhibition. Carcinogenesis 26, 1077-1084 https://doi.org/10.1093/carcin/bgi051
  38. Chiu, C.H., Lin, W.D., Huang, S.Y., and Lee, Y.H. (2004). Effect of a C/EBP gene replacement on mitochondrial biogenesis in fat cells. Genes Dev. 18, 1970-1975 https://doi.org/10.1101/gad.1213104
  39. Clancy, D.J., Gems, D., Harshman, L.G., Oldham, S., Stocker, H., Hafen, E., Leevers, S.J., and Partridge, L. (2001). Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 292, 104-106 https://doi.org/10.1126/science.1057991
  40. Lapointe, J., and Hekimi, S. (2008). Early mitochondrial dysfunction in long-lived Mclk1 +/- mice. J. Biol. Chem. 283, 26217-26227 https://doi.org/10.1074/jbc.M803287200
  41. Shimokawa, I. (2006). A transgenic rat mini rat strain as a tool for studying aging and calorie restriction. In Handbook of Models for Human Aging, P.M. Conn, ed. (Burlington, Canada: Elsevier Inc.), pp. 367-378
  42. Jorgensen, P., Rupes, I., Sharom, J.R., Schneper, L., Broach, J.R., and Tyers, M. (2004). A dynamic transcriptional network communicates growth potential to ribosome synthesis and critical cell size. Genes Dev. 18, 2491-2505 https://doi.org/10.1101/gad.1228804
  43. Salmon, A.B., Murakami, S., Bartke, A., Kopchick, J., Yasumura, K., and Miller, R.A. (2005). Fibroblast cell lines from young adult mice of long-lived mutant strains are resistant to multiple forms of stress. Am. J. Physiol. Endocrinol. Metab. 289, E23-29 https://doi.org/10.1152/ajpendo.00575.2004
  44. Hardie, D.G. (2003). Minireview: the AMP-activated protein kinase cascade: the key sensor of cellular energy status. Endocrinology 144, 5179-5183 https://doi.org/10.1210/en.2003-0982
  45. Kenyon, C., Chang, J., Gensch, E., Rudner, A., and Tabtiang, R. (1993). A C. elegans. mutant that lives twice as long as wild type. Nature 366, 461-464 https://doi.org/10.1038/366461a0
  46. Lopez-Lluch, G., Irusta, P.M., Navas, P., and de Cabo, R. (2008). Mitochondrial biogenesis and healthy aging. Exp. Gerontol. 43, 813-819 https://doi.org/10.1016/j.exger.2008.06.014
  47. Migliaccio, E., Giorgio, M., Mele, S., Pelicci, G., Reboldi, P., Pandolfi, P.P., Lanfrancone, L., and Pelicci, P.G. (1999). The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 402, 309-313 https://doi.org/10.1038/46311
  48. Mitsui, A., Hamuro, J., Nakamura, H., Kondo, N., Hirabayashi, Y., Ishizaki-Koizumi, S., Hirakawa, T., Inoue, T., and Yodoi, J. (2002). Overexpression of human thioredoxin in transgenic mice controls oxidative stress and life span. Antioxid Redox Signal. 4, 693-696 https://doi.org/10.1089/15230860260220201
  49. Otabe, S., Yuan, X., Fukutani, T., Wada, N., Hashinaga, T., Nakayama, H., Hirota, N., Kojima, M., and Yamada, K. (2007). Overexpression of human adiponectin in transgenic mice results in suppression of fat accumulation and prevention of premature death by high-calorie diet. Am. J. Physiol. Endocrinol. Metab. 293, E210-218 https://doi.org/10.1152/ajpendo.00645.2006
  50. Yan, L., Vatner, D.E., O'Connor, J.P., Ivessa, A., Ge, H., Chen, W., Hirotani, S., Ishikawa, Y., Sadoshima, J., and Vatner, S.F. (2007). Type 5 adenylyl cyclase disruption increases longevity and protects against stress. Cell 130, 247-258 https://doi.org/10.1016/j.cell.2007.05.038
  51. Lakowski, B., and Hekimi, S. (1998). The genetics of caloric restriction in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 95, 13091-13096
  52. Miskin, R., and Masos, T. (1997). Transgenic mice overexpressing urokinase-type plasminogen activator in the brain exhibit reduced food consumption, body weight and size, and increased longevity. J. Gerontol. A Biol. Sci. Med. Sci. 52, B118-124
  53. Quick, K.L., Ali, S.S., Arch, R., Xiong, C., Wozniak, D., and Dugan, L.L. (2008). A carboxyfullerene SOD mimetic improves cognition and extends the lifespan of mice. Neurobiol. Aging 29, 117-128 https://doi.org/10.1016/j.neurobiolaging.2006.09.014
  54. To, K., Yamaza, H., Komatsu, T., Hayashida, T., Hayashi, H., Toyama, H., Chiba, T., Higami, Y., and Shimokawa, I. (2007). Downregulation of AMP-activated protein kinase by calorie restriction in rat liver. Exp. Gerontol. 42, 1063-1071 https://doi.org/10.1016/j.exger.2007.07.003
  55. Dorman, J.B., Albinder, B., Shroyer, T., and Kenyon, C. (1995). The age-1 and daf-2 genes function in a common pathway to control the lifespan of Caenorhabditis elegans. Genetics 141, 1399-1406
  56. Mair, W., and Dillin, A. (2008). Aging and survival: the genetics of life span extension by dietary restriction. Annu. Rev. Biochem. 77, 727-754 https://doi.org/10.1146/annurev.biochem.77.061206.171059
  57. Pfluger, P.T., Herranz, D., Velasco-Miguel, S., Serrano, M., and Tschop, M.H. (2008). Sirt1 protects against high-fat diet-induced metabolic damage. Proc. Natl. Acad. Sci. USA 105, 9793-9798
  58. Friedman, D.B., and Johnson, T.E. (1988). A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics 118, 75-86
  59. Hulbert, A.J., Clancy, D.J., Mair, W., Braeckman, B.P., Gems, D., and Partridge, L. (2004). Metabolic rate is not reduced by dietaryrestriction or by lowered insulin/IGF-1 signalling and is not correlated with individual lifespan in Drosophila melanogaster. Exp. Gerontol. 39, 1137-1143 https://doi.org/10.1016/j.exger.2004.04.006
  60. Lakowski, B., and Hekimi, S. (1996). Determination of life-span in Caenorhabditis elegans by four clock genes. Science 272, 1010-1013 https://doi.org/10.1126/science.272.5264.1010
  61. Paik, J.H., Kollipara, R., Chu, G., Ji, H., Xiao, Y., Ding, Z., Miao, L., Tothova, Z., Horner, J.W., Carrasco, D. R., et al. (2007). FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 128, 309-323 https://doi.org/10.1016/j.cell.2006.12.029
  62. Schwartz, M.W., Woods, S.C., Porte, D., Jr., Seeley, R.J., and Baskin, D.G. (2000). Central nervous system control of food intake. Nature 404, 661-671 https://doi.org/10.1038/35007534
  63. Flurkey, K., Papaconstantinou, J., Miller, R.A., and Harrison, D.E. (2001). Lifespan extension and delayed immune and collagen aging in mutant mice with defects in growth hormone production. Proc. Natl. Acad. Sci. USA 98, 6736-6741
  64. McCarter, R.J., and Palmer, J. (1992). Energy metabolism and aging: a lifelong study of Fischer 344 rats. Am. J. Physiol. 263, E448-452
  65. Panowski, S.H., Wolff, S., Aguilaniu, H., Durieux, J., and Dillin, A. (2007). PHA-4/Foxa mediates diet-restriction-induced longevity of C. elegans.. Nature 447, 550-555 https://doi.org/10.1038/nature05837
  66. Park, S.J., Hahc Komatsu, T., Hayashi, H., Yamaza, H., Chiba, T., Higami, Y., Kuramoto, K., and Shimokawa, I. (2008). Calorie restriction initiated at a young age activates the Akt/PKCz/l-Glut4 pathway in rat white adipose tissue in an insulin-independent manner. AGE
  67. Chen, D., Steele, A.D., Lindquist, S., and Guarente, L. (2005). Increase in activity during calorie restriction requires Sirt1. Science 310, 1641 https://doi.org/10.1126/science.1118357
  68. Faulks, S.C., Turner, N., Else, P.L., and Hulbert, A.J. (2006). Calorie restriction in mice: effects on body composition, daily activity, metabolic rate, mitochondrial reactive oxygen species production, and membrane fatty acid composition. J. Gerontol. A Biol. Sci. Med. Sci. 61, 781-794 https://doi.org/10.1093/gerona/61.8.781
  69. Murakami, S., Salmon, A., and Miller, R.A. (2003). Multiplex stress resistance in cells from long-lived dwarf mice. FASEB J. 17, 1565-1566 https://doi.org/10.1096/fj.02-1092fje
  70. Shimokawa, I., Higami, Y., Utsuyama, M., Tuchiya, T., Komatsu, T., Chiba, T., and Yamaza, H. (2002). Life span extension by reduction in growth hormone-insulin-like growth factor-1 axis in a transgenic rat model. Am. J. Pathol. 160, 2259-2265 https://doi.org/10.1016/S0002-9440(10)61173-X
  71. Taguchi, A., Wartschow, L.M., and White, M.F. (2007). Brain IRS2 signaling coordinates life span and nutrient homeostasis. Science 317, 369-372 https://doi.org/10.1126/science.1142179
  72. Kaeberlein, M., Powers, R.W., 3rd, Steffen, K.K., Westman, E.A., Hu, D., Dang, N., Kerr, E.O., Kirkland, K.T., Fields, S., and Kennedy, B.K. (2005). Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 310, 1193-1196 https://doi.org/10.1126/science.1115535
  73. Katic, M., Kennedy, A.R., Leykin, I., Norris, A., McGettrick, A., Gesta, S., Russell, S. J., Bluher, M., Maratos-Flier, E., and Kahn, C.R. (2007). Mitochondrial gene expression and increased oxidative metabolism: role in increased lifespan of fat-specific insulin receptor knock-out mice. Aging Cell 6, 827-839 https://doi.org/10.1111/j.1474-9726.2007.00346.x
  74. Yamauchi, T., Kamon, J., Minokoshi, Y., Ito, Y., Waki, H., Uchida, S., Yamashita, S., Noda, M., Kita, S., Ueki, K., et al. (2002). Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med. 8, 1288-1295 https://doi.org/10.1038/nm788
  75. Ahima, R.S., and Lazar, M.A. (2008). Adipokines and the peripheral and neural control of energy balance. Mol. Endocrinol. 22, 1023-1031 https://doi.org/10.1210/me.2007-0529
  76. Bonkowski, M.S., Rocha, J.S., Masternak, M.M., Al Regaiey, K.A., and Bartke, A. (2006). Targeted disruption of growth hormone receptor interferes with the beneficial actions of calorie restriction. Proc. Natl. Acad. Sci. USA 103, 7901-7905
  77. Hayashi, H., Yamaza, H., Komatsu, T., Park, S., Chiba, T., Higami, Y., Nagayasu, T., and Shimokawa, I. (2008). Calorie restriction minimizes activation of insulin signaling in response to glucose: Potential involvement of the growth hormone-insulin-like growth factor 1 axis. Exp. Gerontol.43, 827-832 https://doi.org/10.1016/j.exger.2008.05.011
  78. Conti, B., Sanchez-Alavez, M., Winsky-Sommerer, R., Morale, M.C., Lucero, J., Brownell, S., Fabre, V., Huitron-Resendiz, S., Henriksen, S., Zorrilla, E.P., et al. (2006). Transgenic mice with a reduced core body temperature have an increased life span. Science 314, 825-828 https://doi.org/10.1126/science.1132191
  79. Gong, X., Shang, F., Obin, M., Palmer, H., Scrofano, M.M., Jahngen-Hodge, J., Smith, D.E., and Taylor, A. (1997). Antioxidant enzyme activities in lens, liver and kidney of calorie restricted Emory mice. Mech. Ageing Dev. 99, 181-192 https://doi.org/10.1016/S0047-6374(97)00102-4
  80. Greer, E.L., Dowlatshahi, D., Banko, M.R., Villen, J., Hoang, K., Blanchard, D., Gygi, S.P., and Brunet, A. (2007). An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Curr. Biol. 17, 1646-1656 https://doi.org/10.1016/j.cub.2007.08.047
  81. Honda, Y., Tanaka, M., and Honda, S. (2008). Modulation of longevity and diapause by redox regulation mechanisms under the insulinlike signaling control in Caenorhabditis elegans. Exp. Gerontol. 43, 520-529 https://doi.org/10.1016/j.exger.2008.02.009
  82. McCay, C.M., Crowell, M.F., and Maynard, L.A. (1989). The effect of retarded growth upon the length of life span and upon the ultimate body size. 1935. Nutrition 5, 155-171; discussion 172
  83. Van Remmen, H., Ikeno, Y., Hamilton, M., Pahlavani, M., Wolf, N., Thorpe, S.R., Alderson, N.L., Baynes, J.W., Epstein, C.J., Huang, T.T., et al. (2003). Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging. Physiol. Genomics 16, 29-37 https://doi.org/10.1152/physiolgenomics.00122.2003
  84. Gonzalez, A.A., Kumar, R., Mulligan, J.D., Davis, A.J., Weindruch, R., and Saupe, K.W. (2004). Metabolic adaptations to fasting and chronic caloric restriction in heart, muscle, and liver do not include changes in AMPK activity. Am. J. Physiol. Endocrinol. Metab.287, E1032-1037 https://doi.org/10.1152/ajpendo.00172.2004
  85. Selman, C., Lingard, S., Choudhury, A.I., Batterham, R.L., Claret, M., Clements, M., Ramadani, F., Okkenhaug, K., Schuster, E., Blanc, E., et al. (2008). Evidence for lifespan extension and delayed agerelated biomarkers in insulin receptor substrate 1 null mice. FASEB J. 22, 807-818 https://doi.org/10.1096/fj.07-9261com
  86. Yamaza, H., Komatsu, T., To, K., Toyama, H., Chiba, T., Higami, Y., and Shimokawa, I. (2007). Involvement of insulin-like growth factor-1 in the effect of caloric restriction: regulation of plasma adiponectin and leptin. J. Gerontol. A Biol. Sci. Med. Sci. 62, 27-33 https://doi.org/10.1093/gerona/62.1.27
  87. Caldeira da Silva, C.C., Cerqueira, F.M., Barbosa, L.F., Medeiros, M.H., and Kowaltowski, A.J. (2008). Mild mitochondrial uncoupling in mice affects energy metabolism, redox balance and longevity. Aging Cell 7, 552-560 https://doi.org/10.1111/j.1474-9726.2008.00407.x
  88. Cho, C.G., Kim, H.J., Chung, S.W., Jung, K.J., Shim, K.H., Yu, B.P., Yodoi, J., and Chung, H.Y. (2003). Modulation of glutathione and thioredoxin systems by calorie restriction during the aging process. Exp. Gerontol. 38, 539-548 https://doi.org/10.1016/S0531-5565(03)00005-6
  89. Conover, C.A., and Bale, L.K. (2007). Loss of pregnancy-associated plasma protein A extends lifespan in mice. Aging Cell 6, 727-729 https://doi.org/10.1111/j.1474-9726.2007.00328.x
  90. Holzenberger, M., Dupont, J., Ducos, B., Leneuve, P., Geloen, A., Even, P.C., Cervera, P., and Le Bouc, Y. (2003). IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421, 182-187 https://doi.org/10.1038/nature01298
  91. apahi, P., Zid, B.M., Harper, T., Koslover, D., Sapin, V., and Benzer, S. (2004). Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr. Biol. 14, 885-890 https://doi.org/10.1016/j.cub.2004.03.059
  92. Nandi, A., Kitamura, Y., Kahn, C.R., and Accili, D. (2004). Mouse models of insulin resistance. Physiol. Rev. 84, 623-647 https://doi.org/10.1152/physrev.00032.2003
  93. Camina, J.P., Carreira, M.C., Micic, D., Pombo, M., Kelestimur, F., Dieguez, C., and Casanueva, F.F. (2003). Regulation of ghrelin secretion and action. Endocrine 22, 5-12 https://doi.org/10.1385/ENDO:22:1:5
  94. Martin, D.E., Soulard, A., and Hall, M.N. (2004). TOR regulates ribosomal protein gene expression via PKA and the Forkhead transcription factor FHL1. Cell 119, 969-979 https://doi.org/10.1016/j.cell.2004.11.047
  95. Pashko, L.L., and Schwartz, A.G. (1992). Reversal of food restrictioninduced inhibition of mouse skin tumor promotion by adrenalectomy. Carcinogenesis 13, 1925-1928 https://doi.org/10.1093/carcin/13.10.1925
  96. Vellai, T., Takacs-Vellai, K., Zhang, Y., Kovacs, A.L., Orosz, L., and Muller, F. (2003). Genetics: influence of TOR kinase on lifespan in C. elegans.. Nature 426, 620
  97. Coschigano, K.T., Clemmons, D., Bellush, L.L., and Kopchick, J.J. (2000). Assessment of growth parameters and life span of GHR/BP gene-disrupted mice. Endocrinology 141, 2608-2613 https://doi.org/10.1210/en.141.7.2608
  98. Hu, D., Cao, P., Thiels, E., Chu, C.T., Wu, G.Y., Oury, T.D., and Klann, E. (2007). Hippocampal long-term potentiation, memory, and longevity in mice that overexpress mitochondrial superoxide dismutase. Neurobiol. Learn Mem. 87, 372-384 https://doi.org/10.1016/j.nlm.2006.10.003
  99. Zhu, M., Lee, G.D., Ding, L., Hu, J., Qiu, G., de Cabo, R., Bernier, M., Ingram, D.K., and Zou, S. (2007). Adipogenic signaling in rat white adipose tissue: modulation by aging and calorie restriction. Exp. Gerontol. 42, 733-744 https://doi.org/10.1016/j.exger.2007.05.011