HS 1-Associated Protein X-1 Is Cleaved by Caspase-3 During Apoptosis

  • Lee, Ah Young (Translational Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Lee, Yoora (Translational Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Park, Yun Kyung (Translational Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Bae, Kwang-Hee (Translational Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Cho, Sayeon (College of Pharmacy, Chung-Ang University) ;
  • Lee, Do Hee (Translational Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Park, Byoung Chul (Translational Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kang, Sunghyun (Translational Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Park, Sung Goo (Translational Research Center, Korea Research Institute of Bioscience and Biotechnology)
  • Received : 2007.07.03
  • Accepted : 2007.08.16
  • Published : 2008.02.29


Caspase-3 (CASP3) plays a key role in apoptosis. In this study, HAX-1 was identified as a new substrate of CASP3 during apoptosis. HAX-1 was cleaved by CASP3 during etoposide-(ETO) induced apoptosis, and this event was inhibited by a CASP3-specific inhibitor. The cleavage site of HAX-1, at $Asp^{127}$, was located using N-terminal amino acid sequencing of in vitro cleavage products of recombinant HAX-1. Overexpression of HAX-1 inhibited ETO-induced apoptotic cell death. It also inhibited CASP3 activity. Together, these results suggest that HAX-1, a substrate of CASP3, inhibits the apoptotic process by inhibiting CASP3 activity.




Supported by : Korea Research Institute of Bioscience and Biotechnology, Korea Science and Engineering Foundation


  1. Deveraux, Q.L., Leo, E., Stennicke, H.R., Welsh, K., Salvesen, G.S., and Reed, J.C. (1999). Cleavage of human inhibitor of apoptosis protein XIAP results in fragments with distinct specificities for caspases. EMBO J. 18, 5242-5251 https://doi.org/10.1093/emboj/18.19.5242
  2. Hengartner, M.O. (2000). The biochemistry of apoptosis. Nature 407, 770-776 https://doi.org/10.1038/35037710
  3. Janicke, R.U., Sprengart, M.L., Wati, M.R., and Porter, A.G. (1998). Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J. Biol. Chem. 273, 9357-9360 https://doi.org/10.1074/jbc.273.16.9357
  4. Suzuki, Y., Demoliere, C., Kitamura, D., Takeshita, H., Deuschle, U., and Watanabe, T. (1997). HAX-1, a novel intracellular protein, localized on mitochondria, directly associates with HS1, a substrate of Src family tyrosine kinases. J. Immunol. 158, 2736-2744
  5. Yedavalli, V.S., Shih, H.M., Chiang, Y.P., Lu, C.Y., Chang, L.Y., Chen, M.Y., Chuang, C.Y., Dayton, A.I., Jeang, K.T., and Huang, L.M. (2005). Human immunodeficiency virus type 1 Vpr interacts with antiapoptotic mitochondrial protein HAX-1. J. Virol. 79, 13735-13746 https://doi.org/10.1128/JVI.79.21.13735-13746.2005
  6. Yamanashi, Y., Fukuda, T., Nishizumi, H., Inazu, T., Higashi, K., Kitamura, D., Ishida, T., Yamamura, H., Watanabe, T., and Yamamoto, T. (1997). Role of tyrosine phosphorylation of HS1 in B cell antigen receptor-mediated apoptosis. J. Exp. Med. 185, 1387-1392 https://doi.org/10.1084/jem.185.7.1387
  7. Zhao, X., Fan, Y., Shen, J., Wu, Y., and Yin, Z. (2006). Human glutathione S-transferase P1 suppresses MEKK1-mediated apoptosis by regulating MEKK1 kinase activity in HEK293 cells. Mol. Cells 21, 395-400
  8. Bose, K. and Clark, A.C. (2005). pH effects on the stability and dimerization of procaspase-3. Protein Sci. 14, 24-36 https://doi.org/10.1110/ps.041003305
  9. Mattson, M.P. (2000). Apoptosis in neurodegenerative disorders. Nat. Rev. Mol. Cell Biol. 1, 120-129 https://doi.org/10.1038/35040009
  10. Sharp, T.V., Wang, H.W., Koumi, A., Hollyman, D., Endo, Y., Ye, H., Du, M.Q., and Boshoff, C. (2002). K15 protein of Kaposi's sarcoma-associated herpesvirus is latently expressed and binds to HAX-1, a protein with antiapoptotic function. J. Virol. 76, 802-816 https://doi.org/10.1128/JVI.76.2.802-816.2002
  11. Maravei, D.V., Trbovich, A.M., Perez, G.I., Tilly, K.I., Banach, D., Talanian, R.V., Wong, W.W., and Tilly, J.L. (1997). Cleavage of cytoskeletal proteins by caspases during ovarian cell death: evidence that cell-free systems do not always mimic apoptotic events in intact cells. Cell Death Differ. 4, 707-712 https://doi.org/10.1038/sj.cdd.4400311
  12. Earnshaw, W.C., Martins, L.M., and Kaufmann, S.H. (1999). Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu. Rev. Biochem. 68, 383-424 https://doi.org/10.1146/annurev.biochem.68.1.383
  13. Deveraux, Q.L., Takahashi, R., Salvesen, G..S., and Reed, J.C. (1997). X-linked IAP is a direct inhibitor of cell-death proteases. Nature 388, 300-304 https://doi.org/10.1038/40901
  14. Gross, A., McDonnell, J.M., and Korsmeyer, S.J. (1999). BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 13, 1899-1911 https://doi.org/10.1101/gad.13.15.1899
  15. Cohen, G.M. (1997). Caspases: the executioners of apoptosis. Biochem. J. 326 ( Pt 1), 1-16 https://doi.org/10.1042/bj3260001
  16. Tamm, I., Kornblau, S.M., Segall, H., Krajewski, S., Welsh, K., Kitada, S., Scudiero, D.A., Tudor, G., Qui, Y.H., Monks, A., et al. (2000). Expression and prognostic significance of IAP-family genes in human cancers and myeloid leukemias. Clin. Cancer Res. 6, 1796-1803
  17. Cilenti, L., Soundarapandian, M.M., Kyriazis, G.A., Stratico, V., Singh, S., Gupta, S., Bonventre, J.V., Alnemri, E.S., and Zervos, A.S. (2004). Regulation of HAX-1 anti-apoptotic protein by Omi/HtrA2 protease during cell death. J. Biol. Chem. 279, 50295-50301 https://doi.org/10.1074/jbc.M406006200
  18. Lee, A.Y., Park, B.C., Jang, M., Cho, S., Lee, D.H., Lee, S.C., Myung, P.K., and Park, S.G. (2004). Identification of caspase- 3 degradome by two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization-time of flight analysis. Proteomics 4, 3429-3436 https://doi.org/10.1002/pmic.200400979
  19. Thornberry, N.A. and Lazebnik, Y. (1998). Caspases: enemies within. Science 281, 1312-1316 https://doi.org/10.1126/science.281.5381.1312
  20. Han, Y., Chen, Y.S., Liu, Z., Bodyak, N., Rigor, D., Bisping, E., Pu, W.T., and Kang, P.M. (2006). Overexpression of HAX-1 protects cardiac myocytes from apoptosis through caspase-9 inhibition. Circ. Res. 99, 415-423 https://doi.org/10.1161/01.RES.0000237387.05259.a5
  21. Kroemer, G. and Reed, J.C. (2000). Mitochondrial control of cell death. Nat. Med. 6, 513-519 https://doi.org/10.1038/74994
  22. Mancini, M., Nicholson, D.W., Roy, S., Thornberry, N.A., Peterson, E.P., Casciola-Rosen, L.A., and Rosen, A. (1998). The caspase-3 precursor has a cytosolic and mitochondrial distribution: implications for apoptotic signaling. J. Cell Biol. 140, 1485-1495 https://doi.org/10.1083/jcb.140.6.1485