Functional Equivalence of Translation Factor elF5B from Candida albicans and Saccharomyces cerevisiae

  • Jun, Kyung Ok (Department of Biological Sciences, Sunchon National University) ;
  • Yang, Eun Ji (Department of Food and Nutrition, Sunchon National University) ;
  • Lee, Byeong Jeong (Department of Biological Sciences, Sunchon National University) ;
  • Park, Jeong Ro (Department of Food and Nutrition, Sunchon National University) ;
  • Lee, Joon H. (Myung-Gok Eye Research Institute, Kim's Eye Hospital, Konyang University College of Medicine) ;
  • Choi, Sang Ki (Department of Biological Sciences, Sunchon National University)
  • Received : 2007.05.07
  • Accepted : 2007.12.03
  • Published : 2008.04.30

Abstract

Eukaryotic translation initiation factor 5B (eIF5B) plays a role in recognition of the AUG codon in conjunction with translation factor eIF2, and promotes joining of the 60S ribosomal subunit. To see whether the eIF5B proteins of other organisms function in Saccharomyces cerevisiae, we cloned the corresponding genes from Oryza sativa, Arabidopsis thaliana, Aspergillus nidulans and Candida albican and expressed them under the control of the galactose-inducible GAL promoter in the $fun12{\Delta}$ strain of Saccharomyces cerevisiae. Expression of Candida albicans eIF5B complemented the slow-growth phenotype of the $fun12{\Delta}$ strain, but that of Aspergillus nidulance did not, despite the fact that its protein was expressed better than that of Candida albicans. The Arabidopsis thaliana protein was also not functional in Saccharomyces. These results reveal that the eIF5B in Candida albicans has a close functional relationship with that of Sacharomyces cerevisiae, as also shown by a phylogenetic analysis based on the amino acid sequences of the eIF5Bs.

Keywords

Candida albicans;eIF5B;Evolution;FUN12;Phylogeny;Saccharomyces cerevisiae;Translation

Acknowledgement

Supported by : Korea Research Foundation

References

  1. Felsenstein, J. (1993). PHYLIP (Phylogeny Inference Package) version 3.5.c Department of Genetics, University of Washington, Seattle, USA
  2. Lee, J.H., Choi, S.K., Roll-Mecak, A., Burley, S.K., and Dever, T.E. (1999). Universal conservation in translation initiation revealed by human and archaeal homologs of bacterial translation initiation factor IF2. Proc. Natl. Acad. Sci. USA. 96, 4342-4347
  3. Olsen, D.S., Savner, E.M., Mathew, A., Zhang, A.F., Krishnamoorthy, T., Phan L., and Hinnebusch, A.G. (2003). Domains of eIF1A that mediate binding to eIF2, eIF3 and eIF5B and promote ternary complex recruitment in vivo. EMBO J. 22, 193-204 https://doi.org/10.1093/emboj/cdg030
  4. Pestova, T.V., Lomakin, I.B., Lee, J.H., Choi, S.K., Dever, T.E., and Hellen, C.U. (2000). The joining of ribosomal subunits in eukaryotes requires eIF5B. Nature 403, 332-335 https://doi.org/10.1038/35002118
  5. Shin, B.S., Maag, D., Roll-Mecak, A., Arefin, M.S., Burley, S.K., Lorsch, J.R., and Dever, T.E. (2002). Uncoupling of initiation factor eIF5B/IF2 GTPase and translational activi ties by mutations that lower ribosome affinity. Cell 111, 1015-1025 https://doi.org/10.1016/S0092-8674(02)01171-6
  6. Algire, M.A., Maag, D., Savio, P., Acker, M.G., Tarun, S.Z. Jr., Sachs, A.B., Asano, K., Nielsen, K.H., Olsen, D.S., Phan, L., et al. (2002). Development and characterization of a reconstituted yeast translation initiation system. RNA 8, 382-397 https://doi.org/10.1017/S1355838202029527
  7. Pestova, T.V., and Kolupaeva, V.G. (2002). The roles of individual eukaryotic translation initiation factors in ribosomal scanning and initiation codon selection. Genes Dev. 16, 2906-2922 https://doi.org/10.1101/gad.1020902
  8. Fekete, C.A., Applefield, D.J., Blakely, S.A., Shirokikh, N., Pestova, T.V., Lorsch, J.R., and Hinnebusch, A.G. (2005). The eIF1A C-terminal domain promotes initiation complex assembly, scanning and AUG selection in vivo. EMBO J. 24, 3588-3601 https://doi.org/10.1038/sj.emboj.7600821
  9. Mitchell, D.A., Marshall, T.K., and Deschenes, R.J. (1993). Vectors for the inducible overexpression of glutathione Stransferase fusion proteins in yeast. Yeast 9, 715-722 https://doi.org/10.1002/yea.320090705
  10. Hershey, J.W.B., and Merrick, W.C. (2000). In translational control of gene expression. Sonenberg, N., Hershey, J.W.B., and Mathews, M.B., eds., (NY, USA: Cold Spring Harbor Lab. Press, Plainview), pp. 33-88
  11. Choi, S.K., Olsen, D.S., Roll-Mecak, A., Martung, A., Remo, K.L., Burley, S.K., Hinnebusch, A.G., and Dever, T.E. (2000). Physical and functional interaction between the eukaryotic orthologs of prokaryotic translation initiation factors IF1 and IF2. Mol. Cell. Biol. 20, 7183-7191 https://doi.org/10.1128/MCB.20.19.7183-7191.2000
  12. Marintchev, A., Kolupaeva, V.G., Pestova, T.V., and Wagner, G. (2003). Mapping the binding interface between human eukaryotic initiation factors 1A and 5B: a new interaction between old partners. Proc. Natl. Acad. Sci. USA 100, 1535-1540
  13. Seong, K.M., Baek, J.H., Ahn, B.Y., Yu, M.H., and Kim, J. (2007). Rpn10p is a receptor for ubiquitinated Gcn4p in proteasomal proteolysis. Mol. Cells 24, 194-199
  14. Saitou, N., and Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425
  15. Choi, S.K., Lee, J.H., Zoll, W.L., Merrick, W.C., and Dever, T.E. (1998). Promotion of Met-tRNAiMet binding to ribosomes by yIF2, a bacterial IF2 homolog in yeast. Science 280, 1757-1760 https://doi.org/10.1126/science.280.5370.1757
  16. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Rec. 15, 4876-4882