A Forward Genetic Approach for Analyzing the Mechanism of Resistance to the Anti-Cancer Drug, 5-Fluorouracil, Using Caenorhabditis elegans

  • Kim, Seongseop (Cancer Experimental Resources Branch, National Cancer Center) ;
  • Shim, Jaegal (Cancer Experimental Resources Branch, National Cancer Center)
  • Received : 2007.08.27
  • Accepted : 2007.09.13
  • Published : 2008.02.29

Abstract

Pyrimidine antagonists including 5-Fluorouracil (5-FU) have been used in chemotherapy for cancer patients for over 40 years. 5-FU, especially, is a mainstay treatment for colorectal cancer. It is a pro-drug that is converted to the active drug via the nucleic acid biosynthetic pathway. The metabolites of 5-FU inhibit normal RNA and DNA function, and induce apoptosis of cancer cells. One of the major obstacles to successful chemotherapy is the resistance of cancer cells to anti-cancer drugs. Therefore, it is important to elucidate resistance mechanisms to improve the efficacy of chemotherapy. We have used C. elegans as a model system to investigate the mechanism of resistance to 5-FU, which induces germ cell death and inhibits larval development in C. elegans. We screened 5-FU resistant mutants no longer arrested as larvae by 5-FU. We obtained 18 mutants out of 72,000 F1 individuals screened, and mapped them into three complementation groups. We propose that C. elegans could be a useful model system for studying mechanisms of resistance to anti-cancer drugs.

Keywords

5-Fluorouracil;Anti-Cancer Drug;C. elegans;Mutant Screen;Resistance

Acknowledgement

Supported by : National Cancer Center

References

  1. Beck, C.F., Ingraham, J.L., Neuhard, J., and Thomassen, E. (1972). Metabolism of pyrimidines and pyrimidine nucleosides by Salmonella typhimurium. J. Bacteriol. 110, 219-228
  2. Liu, Q.A. and Hengartner, M.O. (1999). The molecular mechanism of programmed cell death in C. elegans. Ann. N Y Acad. Sci. 887, 92-104 https://doi.org/10.1111/j.1749-6632.1999.tb07925.x
  3. Longley, D.B., Harkin, D.P., and Johnston, P.G. (2003). 5-fluorouracil: mechanisms of action and clinical strategies. Nature reviews 3, 330-338 https://doi.org/10.1038/nrc1074
  4. Schumacher, B., Hofmann, K., Boulton, S., and Gartner, A. (2001). The C. elegans homolog of the p53 tumor suppressor is required for DNA damage-induced apoptosis. Curr. Biol. 11, 1722-1727 https://doi.org/10.1016/S0960-9822(01)00534-6
  5. Yoo, B.C., Jeon, E., Hong, S.H., Shin, Y.K., Chang, H.J., and Park, J.G. (2004). Metabotropic glutamate receptor 4-mediated 5-Fluorouracil resistance in a human colon cancer cell line. Clin. Cancer Res. 10, 4176-4184 https://doi.org/10.1158/1078-0432.CCR-1114-03
  6. Clynes, M.M. and Duke, E.J. (1976). Altered pyrimidinesalvage metabolism in a 5-fluorouracil-resistant mutant of Drosophila melanogaster. Biochem. Soc. Trans. 4, 900-901
  7. Rich, T.A., Shepard, R.C., and Mosley, S.T. (2004). Four decades of continuing innovation with fluorouracil: current and future approaches to fluorouracil chemoradiation therapy. J. Clin. Oncol. 22, 2214-2232 https://doi.org/10.1200/JCO.2004.08.009
  8. Pratt, S., Shepard, R.L., Kandasamy, R.A., Johnston, P.A., Perry, W., 3rd, and Dantzig, A.H. (2005). The multidrug resistance protein 5 (ABCC5) confers resistance to 5-fluorouracil and transports its monophosphorylated metabolites. Mol. Cancer Ther. 4, 855-863 https://doi.org/10.1158/1535-7163.MCT-04-0291
  9. Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics 77, 71-94
  10. Longley, D.B. and Johnston, P.G. (2005). Molecular mechanisms of drug resistance. J. Pathol. 205, 275-292 https://doi.org/10.1002/path.1706
  11. Wicks, S.R., Yeh, R.T., Gish, W.R., Waterston, R.H., and Plasterk, R.H. (2001). Rapid gene mapping in Caenorhabditis elegans using a high density polymorphism map. Nat. Genet. 28, 160-164 https://doi.org/10.1038/88878
  12. Derry, W.B., Putzke, A.P., and Rothman, J.H. (2001). Caenor-habditis elegans p53: role in apoptosis, meiosis, and stress resistance. Science 294, 591-595 https://doi.org/10.1126/science.1065486
  13. Peters, G.J., Backus, H.H., Freemantle, S., van Triest, B., Codacci- Pisanelli, G., van der Wilt, C.L., Smid, K., Lunec, J., Calvert, A.H., Marsh, S., et al. (2002). Induction of thymidylate synthase as a 5-fluorouracil resistance mechanism. Biochim. Biophys. Acta 1587, 194-205 https://doi.org/10.1016/S0925-4439(02)00082-0
  14. Hengartner, M.O. (1999). Programmed cell death in the nematode C. elegans. Recent progress in hormone research 54, 213-222; discussion 222-214
  15. Davis, M.W., Hammarlund, M., Harrach, T., Hullett, P., Olsen, S., and Jorgensen, E.M. (2005). Rapid single nucleotide polymorphism mapping in C. elegans. BMC Genomics 6, 118 https://doi.org/10.1186/1471-2164-6-118
  16. Duke, E.J. and Glassman, E. (1968). Drug effects in Drosophila: streptomycin sensitive strains and fluorouracil resistant strains. Nature 220, 588-589 https://doi.org/10.1038/220588a0
  17. Jund, R. and Lacroute, F. (1970). Genetic and physiological aspects of resistance to 5-fluoropyrimidines in Saccharomyces cerevisiae. J. Bacteriol. 102, 607-615
  18. Kern, L., de Montigny, J., Jund, R., and Lacroute, F. (1990). The FUR1 gene of Saccharomyces cerevisiae: cloning, structure and expression of wild-type and mutant alleles. Gene 88, 149-157 https://doi.org/10.1016/0378-1119(90)90026-N
  19. Bean, B. and Tomasz, A. (1971). Inhibitory effects and metabolism of 5-fluoropyrimidine derivatives in pneumococcus. J. Bacteriol. 106, 412-420
  20. Maring, J.G., Groen, H.J., Wachters, F.M., Uges, D.R., and de Vries, E.G. (2005). Genetic factors influencing pyrimidine-antagonist chemotherapy. The pharmacogenomics j. 5, 226-243 https://doi.org/10.1038/sj.tpj.6500320