Scavenging Reactive Oxygen Species by Rice Dehydroascorbate Reductase Alleviates Oxidative Stresses in Escherichia coli

  • Shin, Sun-Young (Department of Biology, Kyungpook National University) ;
  • Kim, Il-Sup (Department of Biology, Kyungpook National University) ;
  • Kim, Yul-Ho (National Institute of Crop Science, Rural Development Administration) ;
  • Park, Hyang-Mi (National Institute of Crop Science, Rural Development Administration) ;
  • Lee, Jang-Yong (National Institute of Crop Science, Rural Development Administration) ;
  • Kang, Hong-Gyu (Subtropical Horticulture Research Institute, Cheju National University) ;
  • Yoon, Ho-Sung (Department of Biology, Kyungpook National University)
  • Received : 2008.11.10
  • Accepted : 2008.11.14
  • Published : 2008.12.31

Abstract

Maintaining redox balance is one of the crucial requirements for a cell to endure stress from the outside. Dehydroascorbate reductase (DHAR; EC 1.8.5.1) plays an important role in the ascorbate-glutathione cycle; one of the major ROS scavenging systems in most known biological systems. A cDNA clone of the DHAR gene from Oryza sativa (OsDHAR) was isolated and overexpressed in Escherichia coli BL21 (DE3) strain from the pET-28a(+) expression vector. The OsDHAR transformed E. coli cells showed significantly higher DHAR activity and a lower level of ROS than the E. coli cells transformed by an empty pET-28a(+) vector. Also, the DHAR-overexpressing E. coli strain was more tolerant to oxidant- and heavy metal-mediated stress conditions than the control E. coli strain. The results suggest that the overexpressed rice DHAR gene effectively functions in a prokaryotic system and provide protection to various oxidative stresses.

Keywords

antioxidant;DHAR;Oryza sativa;oxidative stress;ROS

Acknowledgement

Supported by : Rural Development Administration

References

  1. Bhattacharya, J., GhoshDastidar, K., Chatterjee, A., Majee, M., and Majumder, A.L. (2004). Synechocystis Fe superoxide dismutase gene confers oxidative stress tolerance to Escherichia coli. Biochem. Biophys. Res. Commun. 316, 540-544 https://doi.org/10.1016/j.bbrc.2004.02.084
  2. Del Bello, B., Maellaro, E., Sugherini, L., Santucci, A., Comporti, M., and Casini, A.F. (1994). Purification of NADPH-dependent dehydroascorbate reductase from rat liver and its identification with 3 alpha-hydroxysteroid dehydrogenase. Biochem. J. 304, 385-390 https://doi.org/10.1042/bj3040385
  3. Hossain, M.A., and Asada, K. (1984). Purification of dehydroascorbate reductase from spinach and its characterization as a thiol enzyme. Plant Cell Physiol. 25, 85-92
  4. Kwon, S.Y., Choi, S.M., Ahn, Y.O., Lee, H.S., Lee, H.B., Park, Y.M., and Kwak, S.S. (2003). Enhanced stress-tolerance of transgenic tobacco plants expressing a human dehydroascorbate reductase gene. J. Plant Physiol. 160,347-353 https://doi.org/10.1078/0176-1617-00926
  5. Zadzinski, R., Fortuniak, A, Bartosz, G., Bilinski, T., and Grey, M. (1998). Menadione toxicity in Saccharomyces cerevisiee cells: activation by conjugation with glutathione. Biochem. Mol. BioI. Int. 44, 747-759
  6. Lee, Y.P., Kim, S.H., Bang, J'w., Lee, H.S., Kwak, S.S., and Kwon, S.Y. (2007). Enhanced tolerance to oxidative stress in transgenic tobacco plants expressing three antioxidant enzymes in chloroplasts. Plant Cell Rep. 26, 591-598 https://doi.org/10.1007/s00299-006-0253-z
  7. Pukacka, S., and Ratajczak, E. (2006). Antioxidative response of ascorbate-glutathione pathway enzymes and metabolites to desiccation of recalcitrant Acer saccharinum seeds. J. Plant Physiol. 163,1259-1266 https://doi.org/10.1016/j.jplph.2005.10.003
  8. Holland, D., Faltin, Z., Perl, A., Ben-Hayyim, G., and Eshdat, Y. (1994). A novel plant glutathione peroxidase-like protein provides tolerance to oxygen radicals generated by paraquat in Escherichia coli. FEBS Lett. 337, 52-55 https://doi.org/10.1016/0014-5793(94)80628-4
  9. Urano, J., Nakagawa, T., Maki, Y., Masumura, T., Tanaka, K., Murata, N., and Ushimaru, T. (2000). Molecular cloning and characterization of a rice dehydroascorbate reductase. FEBS Lett. 466, 107-111 https://doi.org/10.1016/S0014-5793(99)01768-8
  10. Balzan, R., Agius, D.R., and Bannister, W.H. (1999). Cloned prokaryotic iron superoxide dismutase protects yeast cells against oxidative stress depending on mitochondrial location. Biochem Biophys. Res. Commun. 256, 63-67 https://doi.org/10.1006/bbrc.1999.0285
  11. Chen, Z., Young, TE., Ling, J., Chang, S.C., and Gallie, D.R. (2003). Increasing vitamin C content of plants through enhanced ascorbate recycling. Proc. Natl. Acad. Sci. USA 100,3525-3530
  12. Schmuck, E.M., Board, P.G., Whitbread, AK., Tetlow, N., Cavanaugh, JA, Blackburn, AC., and Masoumi, A (2005). Characterization of the monomethylarsonate reductase and dehydroascorbate reductase activities of Omega class glutathione transferase variants: implications for arsenic metabolism and the age-at-onset of Alzheimer's and Parkinson's diseases. Pharmacogenet. Genomics 15,493-501 https://doi.org/10.1097/01.fpc.0000165725.81559.e3
  13. Woft, S.P. (1994). Ferrous ion oxidation in presence of ferric ion indicator xylenol orange for the measurement of hydroperoxide. Meth. Enzymol. 223, 182-189
  14. Dipierro, S., and Borraccino, G. (1991). Dehydroascorbate reductase from potato tubers. Phytochemistry 30, 427-429 https://doi.org/10.1016/0031-9422(91)83698-K
  15. Eltayeb, A.E., Kawano, N., Badawi, G.H., Kaminaka, H., Sanekata, T., Morishima, I., Shibahara, T., Inanaga, S., and Tanaka, K. (2006). Enhanced tolerance to ozone and drought stresses in transgenic tobacco overexpressing dehydroascorbate reductase in cytosol. Acta Physiol. Plant. 127,57-65 https://doi.org/10.1111/j.1399-3054.2006.00624.x
  16. Ishikawa, 1., Casini, A.F., and Nishikimi, M. (1998). Molecular cloning and functional expression of rat liver glutathione-dependent dehydroascorbate reductase. J. BioI. Chem. 273, 28708-28712 https://doi.org/10.1074/jbc.273.44.28708
  17. Li, M., Huang, W., Yang, Q., Liu, X., and Wu, Q. (2005). Expression and oxidative stress tolerance studies of glutaredoxin from cyanobacterium Synechocystis sp. PCC 6803 in Escherichia coli. Protein Expr. Purif. 42, 85-91 https://doi.org/10.1016/j.pep.2005.03.027
  18. Touati, D. (1988). Molecular genetics of superoxide dismutases. Free Radic. BioI. Med. 5, 393-402 https://doi.org/10.1016/0891-5849(88)90113-X
  19. Kato, Y., Urano, J., Maki, Y., and Ushimaru, T. (1997). Purification and characterization of dehydroascorbate reductase from rice. Plant Cell Physiol. 38, 173-178 https://doi.org/10.1093/oxfordjournals.pcp.a029149
  20. Halliwell, B., and Gutteridge, J.M.C. (1989). Free Radicals in Biology and Medicine (Oxford; Clarendon Press)
  21. Martelli, A, and Moulis, J.M. (2004). Zinc and cadmium specifically interfere with RNA-binding activity of human iron regulatory protein 1. J.lnorg. Biochem. 98, 1413-1420 https://doi.org/10.1016/j.jinorgbio.2004.04.011
  22. Carman, G.M., and Han, G.S. (2007). Regulation of phospholipid synthesis in Saccharomyces cerevisiee by zinc depletion. Biochim. Biophys. Acta 1771, 322-330 https://doi.org/10.1016/j.bbalip.2006.05.006
  23. Harlow, E., and Lane, D. (1988). Antibodies: A Laboratory Manual. (New York; USA, Cold Spring Harbor Laboratory Press)
  24. Yoshida, S., Tamaoki, M., Shikano, T., Nakajima, N., Ogawa, D., loki, M., Aono, M., Kubo, A, Kamada, H., and Inoue, Y. (2006). Cytosolic dehydroascorbate reductase is important for ozone tolerance in Arabidopsis thaliana. Plant Cell Physiol. 47, 304-308 https://doi.org/10.1093/pcp/pci246
  25. Nakano, Y., and Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22, 867-880
  26. Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual. (New York, USA; Cold Spring Harbor Laboratory Press)
  27. Ushimaru, T., Nakagawa, T., Fujioka, Y., Daicho, K., Naito, M., Yamauchi, Y., Nonaka, H., Amako, K., Yamawaki, K., and Murata, N. (2006). Transgenic Arabidopsis plants expressing the rice dehydroascorbate reductase gene are resistant to salt stress. J. Plant Physiol. 163,1179-1184 https://doi.org/10.1016/j.jplph.2005.10.002