Transcriptome Analysis in Brassica rapa under the Abiotic Stresses Using Brassica 24K Oligo Microarray

  • Lee, Sang-Choon (Brassica Genomics Team, National Institute of Agricultural Biotechnology, Rural Development Administration) ;
  • Lim, Myung-Ho (Brassica Genomics Team, National Institute of Agricultural Biotechnology, Rural Development Administration) ;
  • Kim, Jin A (Brassica Genomics Team, National Institute of Agricultural Biotechnology, Rural Development Administration) ;
  • Lee, Soo-In (Brassica Genomics Team, National Institute of Agricultural Biotechnology, Rural Development Administration) ;
  • Kim, Jung Sun (Brassica Genomics Team, National Institute of Agricultural Biotechnology, Rural Development Administration) ;
  • Jin, Mina (Brassica Genomics Team, National Institute of Agricultural Biotechnology, Rural Development Administration) ;
  • Kwon, Soo-Jin (Brassica Genomics Team, National Institute of Agricultural Biotechnology, Rural Development Administration) ;
  • Mun, Jeong-Hwan (Brassica Genomics Team, National Institute of Agricultural Biotechnology, Rural Development Administration) ;
  • Kim, Yeon-Ki (GreenGene Biotech Inc. Genomics and Genetics Institute) ;
  • Kim, Hyun Uk (Brassica Genomics Team, National Institute of Agricultural Biotechnology, Rural Development Administration) ;
  • Hur, Yoonkang (Plant Genome Research Institute, Chungnam National University) ;
  • Park, Beom-Seok (Brassica Genomics Team, National Institute of Agricultural Biotechnology, Rural Development Administration)
  • Received : 2008.08.06
  • Accepted : 2008.09.11
  • Published : 2008.12.31


Genome wide transcription analysis in response to stresses is essential to provide the basis of effective engineering strategies to improve stress tolerance in crop plants. In order to perform transcriptome analysis in Brassica rapa, we constructed a B. rapa oligo microarray, KBGP-24K, using sequence information from approximately 24,000 unigenes and analyzed cold ($4^{\circ}C$), salt (250 mM NaCl), and drought (air-dry) treated B. rapa plants. Among the B. rapa unigenes represented on the microarray, 417 (1.7%), 202 (0.8%), and 738 (3.1%) were identified as responsive genes that were differently expressed 5-fold or more at least once during a 48-h treatment with cold, salt, and drought, respectively. These results were confirmed by RT-PCR analysis. In the abiotic stress responsive genes identified, we found 56 transcription factor genes and 60 commonly responsive genes. It suggests that various transcriptional regulatory mechanisms and common signaling pathway are working together under the abiotic stresses in B. rapa. In conclusion, our new developed 24K oligo microarray will be a useful tool for transcriptome profiling and this work will provide valuable insight in the response to abiotic stress in B. rapa.


abiotic stress;Brassica rapa;microarray;transcriptome


Supported by : National Institute of Agricultural Biotechnology, Rural Development Administration


  1. Breton, G., Danyluk, J., Charron, J.B., and Sarhan, F. (2003). Expression profiling and bioinformatic analyses of a novel stressregulated multispanning transmembrane protein family from cereals and Arabidopsis. Plant Physiol. 132,64-74
  2. Fahey, J.W., and Talalay, P. (1995). The role of crucifers in cancer chemoprotection. In Phytochemicals and Health, D.L. Gustin and H.E. Flores, eds. (Rockville, USA: American Society of Plant Physiologists), pp. 87-93
  3. Francois, L.E. (1994). Growth, seed yield and oil content of canola grown under saline conditions. Argon. J. 86, 233-237
  4. Gomez-Campo, C., and Prakash, S. (1999). Origin and domestication. In Biology of Brassica Coenospecies, C. Gomez-Campo, ed. (Amsterdam: Elsevier), pp. 33-58
  5. Heintzen, C., Melzer, S., Fischer, R., Kappeler, S., Apel, K., and Staiger, D. (1994). A light- and temperature-entrained circadian clock controls expression of transcripts encoding nuclear proteins with homology to RNA-binding proteins in meristematic tissue. PlantJ. 5,799-813
  6. Irizarry, RA, Bolstad, B.M., Collin, F., Cope, L.M., Hobbs, B., and Speed, 1.P. (2003). Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res. 31, e15
  7. Kimura, M., Yamamoto, Y.Y., Seki, M., Sakurai, T., Sato, M., Abe, T., Yoshida, S., Manabe, K., Shinozaki, K., and Matsui, M. (2003). Identification of Arabidopsis genes regulated by high light-stress using cDNA microarray. Photochem. Photobiol. 77, 226-233<0226:IOAGRB>2.0.CO;2
  8. Lee, S., and Yun, S.C. (2006). The ozone stress transcriptome of pepper (Capsicum annuum L.). Mol. Cells 21,197-205
  9. Li, F., Wu, X., Tsang, E., and Cutler, AJ. (2005). Transcriptional profiling of imbibed Brassica napus seed. Genomics 86, 718-730
  10. Morinaga, T. (1933). Interspecific hybridisation in Brassica: 5. The cytology of F1 hybrid of B. carinata and B. a/bog/abra. Jpn. J. Bot. 6, 467-475
  11. O'Neill, C.M., and Bancroft, I. (2000). Comparative physical mapping of segments of the genome of Brassica o/eracea var. a/bog/abra that are homeologous to sequenced regions of chromosomes 4 and 5 of Arabidopsis thaliana. Plant J. 23, 233-243
  12. Rana, D., van den Boogaart, 1., O'Neill, C.M., Hynes, L., Bent, E., Macpherson, L., Park, J.Y., Lim, Y.P., and Bancroft, I. (2004). Conservation of the microstructure of genome segments in Brassica napus and its diploid relatives. Plant J. 40,725-733
  13. RDA (Rural Development Administration) (2007). Culture plan of principal horticultural crops (Suwon, South Korea: RDA)
  14. Seki, M., Narusaka, M., Ishida, J., Nanjo, T., Fujita, M., Oono, Y., Kamiya, A, Nakajima, M., Enju, A, Sakurai, 1., et al. (2002). Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J. 31,279-292
  15. Talarns, V., Oztuk, N.Z., Bohnert, H.J., and Tuberosa, R. (2006). Barley transcript profiles under dehydration shock and drought stress treatments: a comparative analysis. J. Exp. Bot. 58,229-240
  16. Thomashow, M.F. (1999). Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol. Plant Mol. BioI. 50, 571-599
  17. Tran, L.S., Nakashima, K., Sakuma, Y., Simpson, S.D., Fujita, Y., Maruyama, K., Fujita, M., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2004). Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16,2481-2498
  18. U, N. (1935). Genomic analysis of Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn. J. Bot. 7, 389-452
  19. Workman, C., Jensen, L.J., Jarmer, H., Berka, R., Gautier, L., Nielser, H.B., Saxild, H.H., Nielsen, C., Brunak, S., and Knudsen, S. (2002). A new non-linear normalization method for reducing variability in DNA microarray experiments. Genome BioI. 3, research0048.1-0048.16
  20. Yang, T.J., Kim, J.S., Kwon, S.J., Lim, K.B., Choi, B.S., Kim, JA, Jin, M., Park, J.Y., Lim, M.H., Kim, H.I., et al. (2006). Sequencelevel analysis of the diploidization process in the triplicated FLOWERING LOCUS C region of Brassica rapa. Plant Cell 18, 1339-1347
  21. Yokoi, S., Quintero, F.J., Cubero, B., Ruiz, M.T., Bressan, RA, Hasegawa, P.M., and Pardo, J.M. (2002). Differential expression and function of Arabidopsis thaliana NHX Na+/W anti porters in the salt stress response. Plant J. 30, 529-539
  22. Rensink, WA, lobst, S., Hart, A, Stegalkina, S., Liu, J., and Buell, C.R. (2005). Gene expression profiling of potato responses to cold, heat, and salt stress. Funct. Integr. Genomics 5, 201-207
  23. Hegedus, D., Yu, M., Baldwin, D., Gruber, M., Sharpe, A, Parkin, I., Whitwill, S., and Lydiate, D. (2003). Molecular characterization of Brassica napus NAC domain transcriptional activators induced in response to biotic and abiotic stress. Plant Mol. BioI. 53, 383-397
  24. SOderman, E., Mattsson, J., and Engstrom, P. (1996). The Arabidopsis homeobox gene ATHB-7 is induced by water deficit and by abscisic acid. Plant J. 10, 375-381
  25. Yu, L.X., and Setter, T.L. (2003). Comparative transcriptional profiling of placenta and endosperm in developing maize kernels in response to water deficit. Plant Physiol. 131,568-582
  26. Shinozaki, K., Yamaguchi-Shinozaki, K., and Seki, M. (2003). Regulatory network of gene expression in the drought and cold stress responses. Curro Opin. Plant BioI. 6,410-417
  27. Yamaguchi-Shinozaki, K., and Shinozaki, K. (2006). Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu. Rev. Plant BioI. 57, 781-803
  28. Fei, H., Tsang, E., and Cutler, AJ. (2007). Gene expression during seed maturation in Brassica napus in relation to the induction of secondary dormancy. Genomics 89, 419-428
  29. Hu, H., Dai, M., Yao, J., Xiao, B., Li, X., Zhang, Q., and Xiong, L. (2006). Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc. Natl. Acad. Sci. USA 103, 12987-12992
  30. Takeuchi, T., Watanabe, Y., Takano-Shimizu, T., and Kondo, S. (2006). Roles of jumonji and jumonji family genes in chromatin regulation and development. Dev. Dyn. 235, 2449-2459
  31. Gao, M.J., Allard, G., Byass, L., Flanagan, AM., and Singh, J. (2002). Regulation and characterization of four CBF transcription factors from Brassica napus. Plant Mol. BioI. 49, 459-471
  32. Kilian, J., Whitehead, D., Horak, J., Wanke, D., Weinl, S., Batistic, 0., D'Angelo, C., Bornberg-Bauer, E., Kudla, J., and Harter, K. (2007). The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J. 50, 347-363
  33. Morinaga, T. (1934). Interspecific hybridisation in Brassica: 6. The cytology of B. juncea and B. nigra. Cytologia 6, 62-67
  34. Schultz, 1.F., Kiyosue, 1., Yanovsky, M., Wada, M., and Kay, SA (2001). A role for LKP2 in the circadian clock of Arabidopsis. Plant Cell 13,2659-2670
  35. Xiong, L., Schumaker, K.S., and Zhu, J.K. (2002). Cell signaling during cold, drought, and salt stress. Plant Cell 14, Suppl S165-183
  36. Carlsson, J., Lagercrantz, U., Sundstrom, J., Teixeira, R., Wellmer, F., Meyerowitz, E.M., and Glimelius, K. (2007). Microarray analysis reveals altered expression of a large number of nuclear genes in developing cytoplasmic male sterile Brassica napus flowers. Plant J. 49, 452-462
  37. IPCC (Intergovernmental Panel on Climate Change) (2007). Climate change 2007: climate change impacts, adaptation and vulnerability. In Summary for Policymakers. IPCC Working Group II, ed. pp. 1-22
  38. Merlot, S., Gosti, F., Guerrier, D., Vavasseur, A, and Giraudat, J. (2001). The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway. Plant J. 25, 295-303
  39. Soeda, Y., Konings, M.C., Vorst, 0., van Houwelingen, AM., Stoopen, G.M., Maliepaard, CA, Kodde, J., Bino, R.J., Groot, S.P., and van der Geest, AH. (2005). Gene expression programs during Brassica o/eracea seed maturation, osmopriming, and germination are indicators of progression of the germination process and the stress tolerance level. Plant Physiol. 137, 354-368
  40. Tang, D., Qian, H., Yu, S., Cao, Y., Liao, Z., Zhao, L., Sun, X., Huang, D., and Tang, K. (2004). cDNA cloning and characterization of a new stress-responsive gene BoRS1 from Brassica o/eracea var. acephala. Physiol. Planta 121,578-585
  41. Zhao, T.J., Sun, S., Liu, Y., Liu, J.M., Liu, Q., Yan, Y.B., and Zhou, H.M. (2006). Regulating the drought-responsive element (DRE)mediated signaling pathway by synergic functions of trans-active and trans-inactive ORE binding factors in Brassica napus. J. BioI. Chern. 281, 10752-10759
  42. Ingram, J., and Bartels, D. (1996). The molecular basis of dehydration tolerance in plants. Annu. Rev. Plant Physiol. Plant Mol. BioI. 47,277-403
  43. Yang, KA, Lim, C.J., Hong, J.K., Jin, Z.L., Hong, J.C., Yun, D.J., Chung, W.S., Lee, S.Y., Cho, M.J., and Lim, C.O. (2005). Identification of Chinese cabbage genes up-regulated by prolonged cold by using microarray analysis. Plant Sci. 168,959-966
  44. Capel, J., Jarillo, JA, Salinas, J., and Martfnez-Zapater, J.M. (1997). Two homologous low-temperature-inducible genes from Arabidopsis encode highly hydrophobic proteins. Plant Physiol. 115,569-576
  45. Weretilnyk, E., Orr, W., White, T.C., lu, B., and Singh, J. (1993). Characterization of three related low-temperature-regulated cDNAs from winter Brassica napus. Plant Physiol. 101,171-177
  46. Ashraf, M., and McNeilly, T. (1990). Responses of four Brassica species to sodium chloride. Environ. Exp. Bot. 30, 475-487
  47. Heintzen, C., Nater, M., Apel, K., and Staiger, D. (1997). AtGRP7, a nuclear RNA-binding protein as a component of a circadianregulated negative feedback loop in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 94, 8515-8520
  48. Kim, S.J., Moon, J., Lee, I., Maeng, J., and Kim, S.R. (2003). Molecular cloning and expression analysis of a CONSTANS homologue, PnCOL1, from Pharbitis nil. J. Exp. Bot. 54, 1879-1887
  49. Orr, w., lu, B., White, 1.C., Robert, L.S., and Singh, J. (1992). Complementary DNA sequence of a low temperature-induced Brassica napus gene with homology to the Arabidopsis thaliana kin/gene. Plant Physiol. 98, 1532-1534
  50. Shin, D.H., In, J.G., Lim, Y.P., Hasunuma, K., and Choi, K.S. (2004). Molecular cloning and characterization of nucleoside diphosphate (NDP) kinases from Chinese cabbage (Brassica campestris). Mol. Cells 17, 86-94
  51. Doyle, M.R., Davis, S.J., Bastow, R.M., McWatters, H.G., KozmaBognar, L., Nagy, F., Millar, AJ., and Amasino, R.M. (2002). The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana. Nature 419, 74-77
  52. Yin, H., Li, S., Zhao, X., Du, Y., and Ma, X. (2006). cDNA microarray analysis of gene expression in Brassica napus treated with oligochitosan elicitor. Plant Physiol. Biochem. 44, 910-916
  53. Munshi, SK, Bhatia, N., Dhillon, K.S., and Sukhija, P.S. (1986). Effect of moisture and salt stress on oil filling in Brassica seeds. Proc. Indian Natl. Sci. Acad. B52, 755-759
  54. Nakashima, K., Tran, L.S., Van Nguyen, D., Fujita, M., Maruyama, K., Todaka, D., Ito, Y., Hayashi, N., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2007). Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stressresponsive gene expression in rice. Plant J. 51,617-630
  55. Eguchi, T., Matsumura, T., and Koyama, T. (1963). The effect of low temperature on flower and seed formation in Japanese radish and Chinese cabbage. Proc. Am. Soc. Hort. Sci. 82, 322-331
  56. Fujita, M., Fujita, Y., Maruyama, K., Seki, M., Hiratsu, K., OhmeTakagi, M., Tran, L.S., Yamaguchi-Shinozaki, K., and Shinozaki, K. (2004). A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J. 39, 863-876
  57. Rabbani, MA, Maruyama, K., Abe, H., Khan, MA, Katsura, K., Ito, Y., Yoshiwara, K., Seki, M., Shinozaki, K., and YamaguchiShinozaki, K. (2003). Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol. 133,1755-1767