Characterization of Chitin and Chitosan as a Biomedical Polymer

생체의료용 재료로써 키틴·키토산의 특성

  • Jang, Mi-Kyeong (Department of Polymer Science and Engineering, Sunchon National University) ;
  • Nah, Jae-Woon (Department of Polymer Science and Engineering, Sunchon National University)
  • 장미경 (순천대학교 신소재응용공학부 고분자공학전공) ;
  • 나재운 (순천대학교 신소재응용공학부 고분자공학전공)
  • Received : 2008.08.24
  • Published : 2008.10.10


Development of various medical systems was accomplished through the progress of biotechnological method for therapy of human diseases. Furthermore, drug delivery systems have been investigated to carry the bioactive materials such as drug or gene in the body effectively. The most important thing in this system is to develop biomedical polymers having biocompatibility, biodegradability, and non-toxicity. Chitosan, a natural polymer, has been importantly considered as biomedical materials due to its good biocompatibility and various bio-active characteristics. Since the property of chitosan is differently explained according to the crystalline structures of chitin, the study for structural analysis of chitin has to proceed to apply as a biomaterial. From this point of view, this article introduced the analysis of crystalline structural of chitin, general property of chitosan and potential characteristics of low molecular weight water-soluble chitosan (LMWSC) as a biomaterials. Furthermore, chemical modification of LMWSC using various functional groups was also performed to enhance its bioavailability and emphasize their potential as drug delivery carriers (DDS).

인간의 질병을 치료하기 위한 여러 가지 의료 시스템의 개발이 생명공학의 발전과 함께 많은 연구가 이루어지고 있다. 또한 약물이나 유전자와 같은 생리활성물질을 체내에 안전하게 전달할 수 있는 시스템의 개발과 함께 이루어지고 있다. 이러한 시스템에 있어서 가장 중요한 것은 생체적합성 및 생체분해성 그리고 무독성의 특성을 가진 생체의료용 고분자를 개발하는 것이다. 천연고분자물질인 키토산은 좋은 생체적합성과 생체활성의 특성을 가지고 있어서 생체의료용 재료로 심도 있게 고려되어지고 있다. 키토산의 물성은 키틴의 결정성 구조에 따라 다르게 설명되므로 키틴의 구조적 분석에 대한 연구가 생체재료로써의 응용을 위해서 선행되어야 한다. 이러한 관점에서 본 총설에서는 키틴의 결정성 구조 분석, 키토산의 일반적인 물성 그리고 생체의료용 재료로써 저분자량 수용성 키토산의 가능성을 소개하였다. 또한 다양한 기능성기를 이용한 저분자량 수용성 키토산의 화학적인 개질을 약물전달체로써의 가능성을 강조하고 생체이용율의 향상을 위해 수행하였다.



  1. W. Paul and C. P. Sharma, S.T.P. Pharma Sciences, 10, 5 (2000)
  2. R. A. A. Muzzarelli, Chitin, Pergamon Press, 79, Oxford (1990)
  3. R. A. A. Muzzarelli, Natural Chelating Polymer, Pergamon Press, 33, New York (1973)
  4. C. R. Carrara and A. C. Rubiolo, Biotechnol. Prog., 10, 220 (1994)
  5. K. Kurada, T. Sannan, and J. P. Wightnan, J. Appl. Polym. Sci., 23, 511 (1979)
  6. R. A. A. Muzzarelli, Stereochemistry and physical characteristics. In: Chitin, Pergamon Press, 45, Oxford (1977)
  7. M. Shimojoh, K. Fukushima, and D. Kurit, Carbohydrate Polymers, 35, 223 (1998)
  8. G. A. F. Roberts, Chitin Chemistry, 33, Macmillan, New York (1992)
  9. J. W. Nah, M. K. Jang, B. G. Kong, Y. I. Jeong, and C. H. Lee, Journal of Polymer Science Part A: Polymer Chemistry, 42, 3423 (2004)
  10. R. J. Mumper, J. J. Wang, J. M. Claspell, and A. P. Rolland, Proceedings of the International Symposium on Controlled Release Bioactive Materials, 22, 178 (1995)
  11. S. Miyazaki, K. Ishii, and T. Nakai, Chem. Pharm. Bull., 29, 3067 (1981)
  12. Y. Sawayanagi, N. Nambu, and T. Nagai, Chem. Pharm. Bull., 30, 4216 (1982)
  13. J. Kreuter, J. Control. Release, 16, 169 (1991)
  14. E. Alleman, R. Gurny, and E. Doelker, J. Pharm. Biopharm., 39, 173 (1993)
  15. S. S. Davis, L. Illum, S. M. Moghimi, M. C. Davies, C. J. H. Porter, I. S. Muir, A. Brindley, N. M. Christy, M. E. Norman, P. Williams, and S. E. Dunn, J. Control. Release, 24, 157 (1993)
  16. B. Seijo, E. Fattal, L. Roblot-Treupel, and P. Couvreur, Int. J. Pharm., 62, 1 (1990)
  17. L. Illum, S. S. Davis, C. G. Wilson, M. Frier, J. G. Hardy, and N. W. Thomas, Int. J. Pharm., 12, 135 (1982)
  18. L. Illum, I. M. Hunneyball, and S. S. Davis, Int. J. Pharm., 29, 53 (1986)
  19. R. H. Muller, K. H. Wallis, S. D. Troster, and J. Kreuter, J. Control. Rlease, 20, 237 (1992)
  20. T. Verrechia, G. Spenlehauer, D. V. Bazile, A. Murry-Brelier, Y. Archimbaud, and M. Veilard, J. Control. Release, 36, 49 (1995)
  21. R. Gref, Y. Minamitake, M. T. Peracchia, V. Trubetskoy, V. Torchilin, and R. Langer, Science, 263, 1600 (1994)
  22. M. C. Juliene, M. J. Alonso, J. L. Gomez Amoza, and J. P. Benoit, Drug Dev. Ind. Pharm., 18, 1063 (1992)
  23. M. C. Venier-Julienne and J. P. Benoit, Pharm. Acta Helv., 71, 121 (1996)
  24. J. W. Nah, Y. W. Baek, Y. I. Jeong, D. W. Kim, C. S. Cho, S. H. Kim, and M. Y. Kim, Arch Pharm. Res., 21, 418 (1998)
  25. G. S. Kwon, M. Naito, M. Yokoyama, T. Okano, Y. Sakurai, and K. Kataoka, Pharm. Res., 12, 192 (1995)
  26. J. W. Nah, Y. I. Jeong, and C. S. Cho, J. Polym. Sci. B: Polym. Phys., 36, 415 (1998)<415::AID-POLB3>3.0.CO;2-Q
  27. K. Y. Lee, I. C. Kwon, Y.-H. Kim, W. H. Jo, and S. Y. Jeong, J. Control. Release, 51, 213 (1998)
  28. T. Sato, T. Ishii, and Y. Okahata, Proc. Int. Symp. Control. Release Bioact mater., 26, 803 (1999)
  29. J. Murata, Y. Ohya, and T. Ouchi, Carbohydr. Polym., 29, 69 (1996)
  30. O. Tatsuro, N. Hidetoshi, and O. Yuichi, Polymer, 39, 5171 (1998)
  31. R. A. A. Muzzarelli, F. Tanfani, and M. Emanuelli, Carbohydr. Res, 107, 199 (1982)
  32. Y. Shigemasa, H. Matsuura, H. Sashiwa, and H. Saimoto, International Journal of Biological Macromolecules, 18, 237 (1996)
  33. J. W. Nah and M. K. Jang, J. Polym. Sci. Part A: Polym. Chem., 40, 3796 (2002)
  34. J. S. Kim, A. Maruyama, T.l Akaike, and S. W. Kim, Pharm. Res., 15, 116 (1998)
  35. A. Miwa, A. Ishibe, M. Nakano, T. Yamahira, S. Itai, S. Kinno, and H. Kawahara, Pharm. Res., 15, 1844 (1998)