Synthesis of Poly(styrene-co-alkyl methacylate)s for Pour Point Depressants of Diesel containing Biodiesel

바이오디젤을 함유한 경유용 저온유동성 향상제의 합성: 폴리(스티렌-co-알킬 메타크릴레이트)

  • Yang, Young-Do (New Chemistry Research Division, Surfactant & Lubricant Research Team, KRICT) ;
  • Kim, Young-Wun (New Chemistry Research Division, Surfactant & Lubricant Research Team, KRICT) ;
  • Chung, Keun-Wo (New Chemistry Research Division, Surfactant & Lubricant Research Team, KRICT) ;
  • Hwang, Do-Huak (New Chemistry Research Division, Surfactant & Lubricant Research Team, KRICT) ;
  • Hong, Min-Hyeuk (New Chemistry Research Division, Surfactant & Lubricant Research Team, KRICT)
  • 양영도 (한국화학연구원 신화학연구단 바이오정밀화학연구센터) ;
  • 김영운 (한국화학연구원 신화학연구단 바이오정밀화학연구센터) ;
  • 정근우 (한국화학연구원 신화학연구단 바이오정밀화학연구센터) ;
  • 황도혁 (한국화학연구원 신화학연구단 바이오정밀화학연구센터) ;
  • 홍민혁 (한국화학연구원 신화학연구단 바이오정밀화학연구센터)
  • Received : 2008.05.15
  • Accepted : 2008.07.22
  • Published : 2008.10.10

Abstract

A variety of techniques has been employed in order to reduce problems caused by the crystallization of paraffin and saturated fatty acid esters in diesel fuel containing biodiesels. Methacrylate copolymers are known as additives which reduce the pour point and cold filtering plugging point (CFPP) of diesel fuels. This paper describes the synthesis, characterization and low temperature properties, having as an initial step the synthesis of the alkyl methacrylate monomers by esterification of methacrylic acid with C12, C18, and C22 fatty alcohols. The copolymerization of these monomers with styrene was then performed, with molar ratios of 30:70, 50:50 and 70:30 for styrene:alkyl methacrylate. All copolymers were characterized by $^1H-NMR$, FT-IR, and gel permeation chromatography (GPC). The poly(styrene-co-alkyl methacrylate)s (PStmSMAn) leads to a large reduction in the pour point and CFPP of poly(styrene-co-alkyl methacrylate) in ultra low sulfur diesel (ULSD) and BD5 with treated 100~5000 ppm of poly(styrene-co-alkyl methacrylate). BD5 fuel containing 5000 ppm of the copolymer (PSt82SMA18) showed a $25^{\circ}C$ and $9^{\circ}C$ reduction in their pour points and CFPP, respectively.

References

  1. C. Pierre, J. M. Létoffé, N. Bernard, and D. Bernard, Fuel, 65, 861 (1986) https://doi.org/10.1016/0016-2361(86)90082-7
  2. R. O. Dunn and M. O. Bagby, JAOCS, 72, 895 (1995) https://doi.org/10.1007/BF02542067
  3. J. Zhang, C. Wu, W. Li, Y. Wang, and Z. Han, Fuel, 82, 1419 (2003) https://doi.org/10.1016/S0016-2361(03)00028-0
  4. H. S. Ashbaugh, X. Guo, D. Schwahn, R. K. Prud`homme, D. Richter, and L. J. Fetters, Energy & Fuels, 19, 138 (2005) https://doi.org/10.1021/ef049910i
  5. C. W. Chiu, L. G. Schimacher, and G. J. Suppes, Biomass and Bioenergy, 27, 485 (2004)
  6. B. Arun, C. Narayan, R. K. Laskar, K. V. Mazumdar, and B. S. Rao, J. Chem. Techn. & Biotechn., 62, 75 (1994)
  7. R. O. Dunn, M. W. Shockley, and M. O. Bagby, JAOCS, 73, 1719 (1996) https://doi.org/10.1007/BF02517978
  8. American Society for Testing and Materials, ASTM designation, D97-05, Philadelphia (2005)
  9. American Society for Testing and Materials, ASTM designation, D6371-05, Philadelphia (2005)
  10. R. Vijayaraghavan and D. R. MacFarlane, European Polym. J., 42, 2736 (2006) https://doi.org/10.1016/j.eurpolymj.2006.05.010
  11. U. Nestor, J. Soriano, P. M. Veronica, and M. Matsumura, Fuel, 85, 25 (2006) https://doi.org/10.1016/j.fuel.2005.06.006
  12. W. A. Affens, J. M. Hall, and R. N. Hazlett, Fuel, 63, 543 (1984) https://doi.org/10.1016/0016-2361(84)90294-1
  13. A. Jukic, M. Rogosic, and Z. Tanovic, Ing. Eng. Chem. Res., 46, 3321 (2007) https://doi.org/10.1021/ie060890c
  14. Maria del Carmen Garcia, Energy & Fuels, 14, 1043 (2000) https://doi.org/10.1021/ef0000330
  15. J. Zhang, M. Zhang, J. Wan, and W. Li, J. Phys. Chem. B, 112, 36 (2008) https://doi.org/10.1021/jp073052k
  16. R. Kern and R. Dassonville, J. Crystal Growth, 116, 191 (1992) https://doi.org/10.1016/0022-0248(92)90129-7
  17. D. H. M. Beiny, J. W. Mulln, and K. Lewtas, J. Crystal Growth, 102, 801 (1990) https://doi.org/10.1016/0022-0248(90)90845-C
  18. V. A. Adewusi, Petrol. Sci. Technol., 16, 953 (1998) https://doi.org/10.1080/10916469808949819
  19. Y. Song, T. Ren, X. Fu, and X. Xu, Fuel Processing Technology, 86, 641 (2005) https://doi.org/10.1016/j.fuproc.2004.05.011
  20. R. Berkhof and H. J. Kwekkeboom, Reprint, 3rd Servo Oil Field Chemicals Symposium, Moscow, USSR, October (1985)
  21. Y. H. Gu and B. X. Shen, Energy & Fuels, 20, 1579 (2006) https://doi.org/10.1021/ef050414j
  22. D. H. M. Beiny, J. W. Mullin, and K. Lewtas, J. Crystal Growth, 1002, 801 (1990)