DOI QR코드

DOI QR Code

The hepatocyte growth factor/c-Met signaling pathway as a therapeutic target to inhibit angiogenesis

  • You, Weon-Kyoo ;
  • McDonald, Donald M.
  • Published : 2008.12.31

Abstract

Angiogenesis in tumors is driven by multiple growth factors that activate receptor tyrosine kinases. An important driving force of angiogenesis in solid tumors is signaling through vascular endothelial growth factor (VEGF) and its receptors (VEGFRs). Angiogenesis inhibitors that target this signaling pathway are now in widespread use for the treatment of cancer. However, when used alone, inhibitors of VEGF/VEGFR signaling do not destroy all blood vessels in tumors and do not slow the growth of most human cancers. VEGF/VEGFR signaling inhibitors are, therefore, used in combination with chemotherapeutic agents or radiation therapy. Additional targets for inhibiting angiogenesis would be useful for more efficacious treatment of cancer. One promising target is the signaling pathway of hepatocyte growth factor (HGF) and its receptor (HGFR, also known as c-Met), which plays important roles in angiogenesis and tumor growth. Inhibitors of this signaling pathway have been shown to inhibit angiogenesis in multiple in vitro and in vivo models. The HGF/c-Met signaling pathway is now recognized as a promising target in cancer by inhibiting angiogenesis, tumor growth, invasion, and metastasis.

Keywords

Angiogenesis inhibitors;Endothelial cells;HGFR;Receptor tyrosine kinases;Signal transduction;Tumors;VEGF;VEGFR

References

  1. Ferrara, N., Chen, H., Davis-Smyth, T., Gerber, H. P., Nguyen, T. N., Peers, D., Chisholm, V., Hillan, K. J. and Schwall, R. H. (1998) Vascular endothelial growth factor is essential for corpus luteum angiogenesis. Nat. Med. 4, 336-340. https://doi.org/10.1038/nm0398-336
  2. Wilhelm, S., Carter, C., Lynch, M., Lowinger, T., Dumas, J., Smith, R. A., Schwartz, B., Simantov, R. and Kelley, S. (2006) Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat. Rev. Drug Discov. 5, 835-844. https://doi.org/10.1038/nrd2130
  3. Ferrara, N. and Kerbel, R. S. (2005) Angiogenesis as a therapeutic target. Nature 438, 967-974. https://doi.org/10.1038/nature04483
  4. Wojta, J., Kaun, C., Breuss, J. M., Koshelnick, Y., Beckmann, R., Hattey, E., Mildner, M., Weninger, W., Nakamura, T., Tschachler, E. and Binder, B. R. (1999) Hepatocyte growth factor increases expression of vascular endothelial growth factor and plasminogen activator inhibitor-1 in human keratinocytes and the vascular endothelial growth factor receptor flk-1 in human endothelial cells. Lab. Invest. 79, 427-438.
  5. Zhang, Y. W., Su, Y., Volpert, O. V. and Vande Woude, G. F. (2003) Hepatocyte growth factor/scatter factor mediates angiogenesis through positive VEGF and negative thrombospondin 1 regulation. Proc. Natl. Acad. Sci. U. S. A. 100, 12718-12723.
  6. Birchmeier, C., Birchmeier, W., Gherardi, E. and Vande Woude, G. F. (2003) Met, metastasis, motility and more. Nat. Rev. Mol. Cell Biol. 4, 915-925. https://doi.org/10.1038/nrm1261
  7. Nakamura, T., Nishizawa, T., Hagiya, M., Seki, T., Shimonishi, M., Sugimura, A., Tashiro, K. and Shimizu, S. (1989) Molecular cloning and expression of human hepatocyte growth factor. Nature 342, 440-443. https://doi.org/10.1038/342440a0
  8. Naldini, L., Weidner, K. M., Vigna, E., Gaudino, G., Bardelli, A., Ponzetto, C., Narsimhan, R. P., Hartmann, G., Zarnegar, R., Michalopoulos, G. K., Birchmeier, W. and Comoglio, P.M. (1991) Scatter factor and hepatocyte growth factor are indistinguishable ligands for the MET receptor. Embo. J. 10, 2867-2878.
  9. Gandino, L., Longati, P., Medico, E., Prat, M. and Comoglio, P. M. (1994) Phosphorylation of serine 985 negatively regulates the hepatocyte growth factor receptor kinase. J. Biol. Chem. 269, 1815-1820.
  10. Kmiecik, T. E., Keller, J. R., Rosen, E. and Vande Woude, G. F. (1992) Hepatocyte growth factor is a synergistic factor for the growth of hematopoietic progenitor cells. Blood 80, 2454-2457.
  11. Rahimi, N., Tremblay, E., McAdam, L., Park, M., Schwall, R. and Elliott, B. (1996) Identification of a hepatocyte growth factor autocrine loop in a murine mammary carcinoma. Cell Growth Differ. 7, 263-270.
  12. Yi, S. and Tsao, M. S. (2000) Activation of hepatocyte growth factor-met autocrine loop enhances tumorigenicity in a human lung adenocarcinoma cell line. Neoplasia 2, 226-234. https://doi.org/10.1038/sj.neo.7900080
  13. Petrelli, A., Circosta, P., Granziero, L., Mazzone, M., Pisacane, A., Fenoglio, S., Comoglio, P. M. and Giordano, S. (2006) Ab-induced ectodomain shedding mediates hepatocyte growth factor receptor down-regulation and hampers biological activity. Proc. Natl. Acad. Sci. U. S. A. 103, 5090-5095.
  14. Christensen, J. G., Zou, H. Y., Arango, M. E., Li, Q., Lee, J. H., McDonnell, S. R., Yamazaki, S., Alton, G. R., Mroczkowski, B. and Los, G. (2007) Cytoreductive antitumor activity of PF-2341066, a novel inhibitor of anaplastic lymphoma kinase and c-Met, in experimental models of anaplastic large-cell lymphoma. Mol. Cancer Ther. 6, 3314-3322. https://doi.org/10.1158/1535-7163.MCT-07-0365
  15. Srinivasan, R., Choueiri, T. K., Vaishampayan, U., Rosenberg, J. E., Stein, M. N., Logan, T., Bukowski, R. M., Mueller, T., Keer, H. N. and Linehan, W. M. (2008) A phase II study of the dual MET/VEGFR2 inhibitor XL880 in patients (pts) with papillary renal carcinoma (PRC). J. Clin. Oncol. 26, 5103. https://doi.org/10.1200/jco.2008.26.15_suppl.5103
  16. Maulik, G., Madhiwala, P., Brooks, S., Ma, P. C., Kijima, T., Tibaldi, E. V., Schaefer, E., Parmar, K. and Salgia, R. (2002) Activated c-Met signals through PI3K with dramatic effects on cytoskeletal functions in small cell lung cancer. J. Cell. Mol. Med. 6, 539-553. https://doi.org/10.1111/j.1582-4934.2002.tb00453.x
  17. Yao, V. J., Ozawa, M. G., Varner, A. S., Kasman, I. M., Chanthery, Y. H., Pasqualini, R., Arap, W. and McDonald, D. M. (2006) Antiangiogenic therapy decreases integrin expression in normalized tumor blood vessels. Cancer Res. 66, 2639-2649. https://doi.org/10.1158/0008-5472.CAN-05-1824
  18. Longati, P., Bardelli, A., Ponzetto, C., Naldini, L. and Comoglio, P. M. (1994) Tyrosines1234-1235 are critical for activation of the tyrosine kinase encoded by the MET proto- oncogene (HGF receptor). Oncogene 9, 49-57.
  19. Okano, J., Shiota, G. and Kawasaki, H. (1999) Expression of hepatocyte growth factor (HGF) and HGF receptor (c-met) proteins in liver diseases: an immunohistochemical study. Liver 19, 151-159. https://doi.org/10.1111/j.1478-3231.1999.tb00025.x
  20. Gerritsen, M. E., Tomlinson, J. E., Zlot, C., Ziman, M. and Hwang, S. (2003) Using gene expression profiling to identify the molecular basis of the synergistic actions of hepatocyte growth factor and vascular endothelial growth factor in human endothelial cells. Br. J. Pharmacol. 140, 595-610. https://doi.org/10.1038/sj.bjp.0705494
  21. Peghini, P. L., Iwamoto, M., Raffeld, M., Chen, Y. J., Goebel, S. U., Serrano, J. and Jensen, R. T. (2002) Overexpression of epidermal growth factor and hepatocyte growth factor receptors in a proportion of gastrinomas correlates with aggressive growth and lower curability. Clin. Cancer Res. 8, 2273-2285.
  22. Morabito, A., De Maio, E., Di Maio, M., Normanno, N. and Perrone, F. (2006) Tyrosine kinase inhibitors of vascular endothelial growth factor receptors in clinical trials: current status and future directions. Oncologist 11, 753-764. https://doi.org/10.1634/theoncologist.11-7-753
  23. Song, L., Turkson, J., Karras, J. G., Jove, R. and Haura, E. B. (2003) Activation of Stat3 by receptor tyrosine kinases and cytokines regulates survival in human non-small cell carcinoma cells. Oncogene 22, 4150-4165. https://doi.org/10.1038/sj.onc.1206479
  24. Jain, R. K. (2001) Normalizing tumor vasculature with anti- angiogenic therapy: a new paradigm for combination therapy. Nat. Med. 7, 987-989. https://doi.org/10.1038/nm0901-987
  25. Horiguchi, N., Takayama, H., Toyoda, M., Otsuka, T., Fukusato, T., Merlino, G., Takagi, H. and Mori, M. (2002) Hepatocyte growth factor promotes hepatocarcinogenesis through c-Met autocrine activation and enhanced angiogenesis in transgenic mice treated with diethylnitrosamine. Oncogene 21, 1791-1799. https://doi.org/10.1038/sj.onc.1205248
  26. Tseng, J. R., Kang, K. W., Dandekar, M., Yaghoubi, S., Lee, J. H., Christensen, J. G., Muir, S., Vincent, P. W., Michaud, N. R. and Gambhir, S. S. (2008) Preclinical efficacy of the c-Met inhibitor CE-355621 in a U87 MG mouse xenograft model evaluated by 18F-FDG small-animal PET. J. Nucl. Med. 49, 129-134. https://doi.org/10.2967/jnumed.107.045914
  27. Jain, R. K. (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307, 58-62. https://doi.org/10.1126/science.1104819
  28. Rodrigues, G. A., Naujokas, M. A. and Park, M. (1991) Alternative splicing generates isoforms of the met receptor tyrosine kinase which undergo differential processing. Mol. Cell. Biol. 11, 2962-2970. https://doi.org/10.1128/MCB.11.6.2962
  29. Peschard, P., Ishiyama, N., Lin, T., Lipkowitz, S. and Park, M. (2004) A conserved DpYR motif in the juxtamembrane domain of the Met receptor family forms an atypical c-Cbl/Cbl-b tyrosine kinase binding domain binding site required for suppression of oncogenic activation. J. Biol. Chem. 279, 29565-29571. https://doi.org/10.1074/jbc.M403954200
  30. Folkman, J. (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med. 1, 27-31. https://doi.org/10.1038/nm0195-27
  31. Mazzone, M., Basilico, C., Cavassa, S., Pennacchietti, S., Risio, M., Naldini, L., Comoglio, P. M. and Michieli, P. (2004) An uncleavable form of pro-scatter factor suppresses tumor growth and dissemination in mice. J. Clin. Invest. 114, 1418-1432. https://doi.org/10.1172/JCI22235
  32. Martens, T., Schmidt, N. O., Eckerich, C., Fillbrandt, R., Merchant, M., Schwall, R., Westphal, M. and Lamszus, K. (2006) A novel one-armed anti-c-Met antibody inhibits glioblastoma growth in vivo. Clin. Cancer Res. 12, 6144- 6152. https://doi.org/10.1158/1078-0432.CCR-05-1418
  33. Ponzetto, C., Bardelli, A., Maina, F., Longati, P., Panayotou, G., Dhand, R., Waterfield, M. D. and Comoglio, P. M. (1993) A novel recognition motif for phosphatidylinositol 3-kinase binding mediates its association with the hepatocyte growth factor/scatter factor receptor. Mol. Cell. Biol. 13, 4600-4608. https://doi.org/10.1128/MCB.13.8.4600
  34. Kajiya, K., Hirakawa, S., Ma, B., Drinnenberg, I. and Detmar, M. (2005) Hepatocyte growth factor promotes lymphatic vessel formation and function. Embo. J. 24, 2885-2895. https://doi.org/10.1038/sj.emboj.7600763
  35. Vadnais, J., Nault, G., Daher, Z., Amraei, M., Dodier, Y., Nabi, I. R. and Noel, J. (2002) Autocrine activation of the hepatocyte growth factor receptor/met tyrosine kinase induces tumor cell motility by regulating pseudopodial protrusion. J. Biol. Chem. 277, 48342-48350. https://doi.org/10.1074/jbc.M209481200
  36. Kim, K. J., Wang, L., Su, Y. C., Gillespie, G. Y., Salhotra, A., Lal, B. and Laterra, J. (2006) Systemic anti-hepatocyte growth factor monoclonal antibody therapy induces the regression of intracranial glioma xenografts. Clin. Cancer Res. 12, 1292-1298. https://doi.org/10.1158/1078-0432.CCR-05-1793
  37. Inai, T., Mancuso, M., Hashizume, H., Baffert, F., Haskell, A., Baluk, P., Hu-Lowe, D. D., Shalinsky, D. R., Thurston, G., Yancopoulos, G. D. and McDonald, D. M. (2004) Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts. Am. J. Pathol. 165, 35-52. https://doi.org/10.1016/S0002-9440(10)63273-7
  38. Kong-Beltran, M., Stamos, J. and Wickramasinghe, D. (2004) The Sema domain of Met is necessary for receptor dimerization and activation. Cancer Cell 6, 75-84. https://doi.org/10.1016/j.ccr.2004.06.013
  39. Goodman, V. L., Rock, E. P., Dagher, R., Ramchandani, R. P., Abraham, S., Gobburu, J. V., Booth, B. P., Verbois, S. L., Morse, D. E., Liang, C. Y., Chidambaram, N., Jiang, J. X., Tang, S., Mahjoob, K., Justice, R. and Pazdur, R. (2007) Approval summary: sunitinib for the treatment of imatinib refractory or intolerant gastrointestinal stromal tumors and advanced renal cell carcinoma. Clin. Cancer Res. 13, 1367-1373. https://doi.org/10.1158/1078-0432.CCR-06-2328
  40. Rock, E. P., Goodman, V., Jiang, J. X., Mahjoob, K., Verbois, S. L., Morse, D., Dagher, R., Justice, R. and Pazdur, R. (2007) Food and drug administration drug approval summary: sunitinib malate for the treatment of gastrointestinal stromal tumor and advanced renal cell carcinoma. Oncologist 12, 107-113. https://doi.org/10.1634/theoncologist.12-1-107
  41. Jun, H. T., Sun, J., Rex, K., Radinsky, R., Kendall, R., Coxon, A. and Burgess, T. L. (2007) AMG 102, a fully human anti-hepatocyte growth factor/scatter factor neutralizing antibody, enhances the efficacy of temozolomide or docetaxel in U-87 MG cells and xenografts. Clin. Cancer Res. 13, 6735-6742. https://doi.org/10.1158/1078-0432.CCR-06-2969
  42. Zarnegar, R. (1995) Regulation of HGF and HGFR gene expression. Exs. 74, 33-49.
  43. Salgia, R., Sherman, S., Hong, D. S., Ng, C. S., Frye, J., Janisch, L., Ratain, M. J. and Kurzrock, R. (2008) A phase I study of XL184, a RET, VEGFR2, and MET kinase inhibitor, in patients (pts) with advanced malignancies, including pts with medullary thyroid cancer (MTC). J. Clin. Oncol. 26, 3522. https://doi.org/10.1200/jco.2008.26.15_suppl.3522
  44. Garcia, S., Dales, J. P., Charafe-Jauffret, E., Carpentier- Meunier, S., Andrac-Meyer, L., Jacquemier, J., Andonian, C., Lavaut, M. N., Allasia, C., Bonnier, P. and Charpin, C. (2007) Overexpression of c-Met and of the transducers PI3K, FAK and JAK in breast carcinomas correlates with shorter survival and neoangiogenesis. Int. J. Oncol. 31, 49-58.
  45. Gohda, E., Tsubouchi, H., Nakayama, H., Hirono, S., Sakiyama, O., Takahashi, K., Miyazaki, H., Hashimoto, S. and Daikuhara, Y. (1988) Purification and partial characterization of hepatocyte growth factor from plasma of a patient with fulminant hepatic failure. J. Clin. Invest. 81, 414-419. https://doi.org/10.1172/JCI113334
  46. Bottaro, D. P., Rubin, J. S., Faletto, D. L., Chan, A. M., Kmiecik, T. E., Vande Woude, G. F. and Aaronson, S. A. (1991) Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science 251, 802-804. https://doi.org/10.1126/science.1846706
  47. Maina, F., Casagranda, F., Audero, E., Simeone, A., Comoglio, P. M., Klein, R. and Ponzetto, C. (1996) Uncoupling of Grb2 from the Met receptor in vivo reveals complex roles in muscle development. Cell 87, 531-542. https://doi.org/10.1016/S0092-8674(00)81372-0
  48. Brekken, R. A., Overholser, J. P., Stastny, V. A., Waltenberger, J., Minna, J. D. and Thorpe, P. E. (2000) Selective inhibition of vascular endothelial growth factor (VEGF) receptor 2 (KDR/Flk-1) activity by a monoclonal anti-VEGF antibody blocks tumor growth in mice. Cancer Res. 60, 5117-5124.
  49. Jung, W., Castren, E., Odenthal, M., Vande Woude, G. F., Ishii, T., Dienes, H. P., Lindholm, D. and Schirmacher, P. (1994) Expression and functional interaction of hepatocyte growth factor-scatter factor and its receptor c-met in mammalian brain. J. Cell Biol. 126, 485-494. https://doi.org/10.1083/jcb.126.2.485
  50. Sheth, P. R., Hays, J. L., Elferink, L. A. and Watowich, S. J. (2008) Biochemical basis for the functional switch that regulates hepatocyte growth factor receptor tyrosine kinase activation. Biochemistry 47, 4028-4038. https://doi.org/10.1021/bi701892f
  51. Berthou, S., Aebersold, D. M., Schmidt, L. S., Stroka, D., Heigl, C., Streit, B., Stalder, D., Gruber, G., Liang, C., Howlett, A. R., Candinas, D., Greiner, R. H., Lipson, K. E. and Zimmer, Y. (2004) The Met kinase inhibitor SU11274 exhibits a selective inhibition pattern toward different receptor mutated variants. Oncogene 23, 5387-5393. https://doi.org/10.1038/sj.onc.1207691
  52. Puri, N., Khramtsov, A., Ahmed, S., Nallasura, V., Hetzel, J. T., Jagadeeswaran, R., Karczmar, G. and Salgia, R. (2007) A selective small molecule inhibitor of c-Met, PHA665752, inhibits tumorigenicity and angiogenesis in mouse lung cancer xenografts. Cancer Res. 67, 3529-3534. https://doi.org/10.1158/0008-5472.CAN-06-4416
  53. Wong, A. S., Roskelley, C. D., Pelech, S., Miller, D., Leung, P. C. and Auersperg, N. (2004) Progressive changes in Met-dependent signaling in a human ovarian surface epithelial model of malignant transformation. Exp. Cell Res. 299, 248-256. https://doi.org/10.1016/j.yexcr.2004.06.002
  54. Cohen, M. H., Gootenberg, J., Keegan, P. and Pazdur, R. (2007) FDA drug approval summary: bevacizumab (Avastin) plus Carboplatin and Paclitaxel as first-line treatment of advanced/metastatic recurrent nonsquamous non-small cell lung cancer. Oncologist 12, 713-718. https://doi.org/10.1634/theoncologist.12-6-713
  55. Gherardi, E. and Stoker, M. (1990) Hepatocytes and scatter factor. Nature 346, 228.
  56. Zhu, H., Naujokas, M. A., Fixman, E. D., Torossian, K. and Park, M. (1994) Tyrosine 1356 in the carboxyl-terminal tail of the HGF/SF receptor is essential for the transduction of signals for cell motility and morphogenesis. J. Biol. Chem. 269, 29943-29948.
  57. Liu, Y., Wilkinson, F. L., Kirton, J. P., Jeziorska, M., Iizasa, H., Sai, Y., Nakashima, E., Heagerty, A. M., Canfield, A. E. and Alexander, M. Y. (2007) Hepatocyte growth factor and c-Met expression in pericytes: implications for atherosclerotic plaque development. J. Pathol. 212, 12-19. https://doi.org/10.1002/path.2155
  58. Kuba, K., Matsumoto, K., Date, K., Shimura, H., Tanaka, M. and Nakamura, T. (2000) HGF/NK4, a four-kringle antagonist of hepatocyte growth factor, is an angiogenesis inhibitor that suppresses tumor growth and metastasis in mice. Cancer Res. 60, 6737-6743.
  59. Bean, J., Brennan, C., Shih, J. Y., Riely, G., Viale, A., Wang, L., Chitale, D., Motoi, N., Szoke, J., Broderick, S., Balak, M., Chang, W. C., Yu, C. J., Gazdar, A., Pass, H., Rusch, V., Gerald, W., Huang, S. F., Yang, P. C., Miller, V., Ladanyi, M., Yang, C. H. and Pao, W. (2007) MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc. Natl. Acad. Sci. U. S. A. 104, 20932-20937.
  60. Michieli, P., Mazzone, M., Basilico, C., Cavassa, S., Sottile, A., Naldini, L. and Comoglio, P. M. (2004) Targeting the tumor and its microenvironment by a dual-function decoy Met receptor. Cancer Cell 6, 61-73. https://doi.org/10.1016/j.ccr.2004.05.032
  61. Ding, S., Merkulova-Rainon, T., Han, Z. C. and Tobelem, G. (2003) HGF receptor up-regulation contributes to the angiogenic phenotype of human endothelial cells and promotes angiogenesis in vitro. Blood 101, 4816-4822. https://doi.org/10.1182/blood-2002-06-1731
  62. Comoglio, P. M., Giordano, S. and Trusolino, L. (2008) Drug development of MET inhibitors: targeting oncogene addiction and expedience. Nat. Rev. Drug Discov. 7, 504-516. https://doi.org/10.1038/nrd2530
  63. Tiran, Z., Oren, A., Hermesh, C., Rotman, G., Levine, Z., Amitai, H., Handelsman, T., Beiman, M., Chen, A., Landesman- Milo, D., Dassa, L., Peres, Y., Koifman, C., Glezer, S., Vidal- Finkelstein, R., Bahat, K., Pergam, T., Israel, C., Horev, J., Tsarfaty, I. and Ayalon-Soffer, M. (2008) A novel recombinant soluble splice variant of Met is a potent antagonist of the hepatocyte growth factor/scatter factor-Met pathway. Clin. Cancer Res. 14, 4612-4621. https://doi.org/10.1158/1078-0432.CCR-08-0108
  64. Puri, N., Ahmed, S., Janamanchi, V., Tretiakova, M., Zumba, O., Krausz, T., Jagadeeswaran, R. and Salgia, R. (2007) c-Met is a potentially new therapeutic target for treatment of human melanoma. Clin. Cancer Res. 13, 2246-2253. https://doi.org/10.1158/1078-0432.CCR-06-0776
  65. Gherardi, E., Gray, J., Stoker, M., Perryman, M. and Furlong, R. (1989) Purification of scatter factor, a fibroblast- derived basic protein that modulates epithelial interactions and movement. Proc. Natl. Acad. Sci. U. S. A. 86, 5844-5848.
  66. Matsumoto, K. and Nakamura, T. (2005) Mechanisms and significance of bifunctional NK4 in cancer treatment. Biochem. Biophys. Res. Commun. 333, 316-327. https://doi.org/10.1016/j.bbrc.2005.05.131
  67. Ponzetto, C., Bardelli, A., Zhen, Z., Maina, F., dalla Zonca, P., Giordano, S., Graziani, A., Panayotou, G. and Comoglio, P. M. (1994) A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family. Cell 77, 261-271. https://doi.org/10.1016/0092-8674(94)90318-2
  68. Anastasi, S., Giordano, S., Sthandier, O., Gambarotta, G., Maione, R., Comoglio, P. and Amati, P. (1997) A natural hepatocyte growth factor/scatter factor autocrine loop in myoblast cells and the effect of the constitutive Met kinase activation on myogenic differentiation. J. Cell Biol. 137, 1057-1068. https://doi.org/10.1083/jcb.137.5.1057
  69. Abounader, R. and Laterra, J. (2005) Scatter factor/hepatocyte growth factor in brain tumor growth and angiogenesis. Neuro. Oncol. 7, 436-451. https://doi.org/10.1215/S1152851705000050
  70. Herbst, R. S., O'Neill, V. J., Fehrenbacher, L., Belani, C. P., Bonomi, P. D., Hart, L., Melnyk, O., Ramies, D., Lin, M. and Sandler, A. (2007) Phase II study of efficacy and safety of bevacizumab in combination with chemotherapy or erlotinib compared with chemotherapy alone for treatment of recurrent or refractory non small-cell lung cancer. J. Clin. Oncol. 25, 4743-4750. https://doi.org/10.1200/JCO.2007.12.3026
  71. Maulik, G., Shrikhande, A., Kijima, T., Ma, P. C., Morrison, P. T. and Salgia, R. (2002) Role of the hepatocyte growth factor receptor, c-Met, in oncogenesis and potential for therapeutic inhibition. Cytokine Growth Factor Rev. 13, 41-59. https://doi.org/10.1016/S1359-6101(01)00029-6
  72. Stellrecht, C. M., Phillip, C. J., Cervantes-Gomez, F. and Gandhi, V. (2007) Multiple myeloma cell killing by depletion of the MET receptor tyrosine kinase. Cancer Res. 67, 9913-9920. https://doi.org/10.1158/0008-5472.CAN-07-0770
  73. Otsuka, T., Takayama, H., Sharp, R., Celli, G., LaRochelle, W. J., Bottaro, D. P., Ellmore, N., Vieira, W., Owens, J. W., Anver, M. and Merlino, G. (1998) c-Met autocrine activation induces development of malignant melanoma and acquisition of the metastatic phenotype. Cancer Res. 58, 5157-5167.
  74. Grant, D. S., Kleinman, H. K., Goldberg, I. D., Bhargava, M. M., Nickoloff, B. J., Kinsella, J. L., Polverini, P. and Rosen, E. M. (1993) Scatter factor induces blood vessel formation in vivo. Proc. Natl. Acad. Sci. U. S. A. 90, 1937-1941.
  75. Miller, C. T., Lin, L., Casper, A. M., Lim, J., Thomas, D. G., Orringer, M. B., Chang, A. C., Chambers, A. F., Giordano, T. J., Glover, T. W. and Beer, D. G. (2006) Genomic amplification of MET with boundaries within fragile site FRA7G and upregulation of MET pathways in esophageal adenocarcinoma. Oncogene 25, 409-418. https://doi.org/10.1038/sj.onc.1209057
  76. Bardelli, A., Ponzetto, C. and Comoglio, P. M. (1994) Identification of functional domains in the hepatocyte growth factor and its receptor by molecular engineering. J. Biotechnol. 37, 109-122. https://doi.org/10.1016/0168-1656(94)90002-7

Cited by

  1. Comprehensive Molecular Analyses of Lung Adenocarcinoma with Regard to the Epidermal Growth Factor Receptor, K-ras, MET, and Hepatocyte Growth Factor Status vol.5, pp.5, 2010, https://doi.org/10.1097/JTO.0b013e3181d0a4db
  2. The ERK1/2-Hepatocyte Nuclear Factor 4α Axis Regulates HumanABCC6Gene Expression in Hepatocytes vol.285, pp.30, 2010, https://doi.org/10.1074/jbc.M110.105593
  3. c-Met expression is associated with time to recurrence in patients with glioblastoma multiforme vol.18, pp.1, 2011, https://doi.org/10.1016/j.jocn.2010.05.010
  4. Breaking down the evidence for bevacizumab in advanced cervical cancer: past, present and future vol.2, pp.1, 2015, https://doi.org/10.1186/s40661-015-0015-0
  5. Remodeling of angiogenesis and lymphangiogenesis in cervical cancer development vol.61, pp.5, 2015, https://doi.org/10.18097/pbmc20156105579
  6. Monitoring the Longitudinal Intra-tumor Physiological Impulse Response to VEGFR2 Blockade in Breast Tumors Using DCE-CT vol.13, pp.6, 2011, https://doi.org/10.1007/s11307-010-0441-7
  7. Anti-vascular therapies in ovarian cancer: moving beyond anti-VEGF approaches vol.34, pp.1, 2015, https://doi.org/10.1007/s10555-014-9538-9
  8. Overproduction of recombinant human hepatocyte growth factor in Chinese hamster ovary cells vol.70, pp.2, 2010, https://doi.org/10.1016/j.pep.2009.10.004
  9. Anti-angiogenic activity of water extract from Euphorbia pekinensis Rupr vol.206, 2017, https://doi.org/10.1016/j.jep.2017.05.033
  10. Hepatocyte Growth Factor Induces a Proangiogenic Phenotype and Mobilizes Endothelial Progenitor Cells by Activating Nox2 vol.15, pp.4, 2011, https://doi.org/10.1089/ars.2010.3533
  11. New agents for prostate cancer vol.25, pp.9, 2014, https://doi.org/10.1093/annonc/mdu038
  12. Importance of Fibroblast Growth Factor Receptor in Neovascularization and Tumor Escape from Antiangiogenic Therapy vol.10, pp.2, 2012, https://doi.org/10.1016/j.clgc.2012.01.010
  13. The third line of treatment for metastatic prostate cancer patients: Option or strategy? vol.95, pp.3, 2015, https://doi.org/10.1016/j.critrevonc.2015.04.010
  14. MET/HGF Signaling Pathway in Ovarian Carcinoma: Clinical Implications and Future Direction vol.2012, 2012, https://doi.org/10.1155/2012/960327
  15. Recent advances in the discovery of small molecule c-Met kinase inhibitors 2017, https://doi.org/10.1016/j.ejmech.2017.08.044
  16. JNK/P38 Mitogen-activated Protein Kinase Used for Hepatocyte Growth Factor–induced Proliferation, Differentiation, and Migration in Human Dental Papilla Cells vol.38, pp.9, 2012, https://doi.org/10.1016/j.joen.2012.06.011
  17. Targeting CD9 produces stimulus-independent antiangiogenic effects predominantly in activated endothelial cells during angiogenesis: A novel antiangiogenic therapy vol.413, pp.1, 2011, https://doi.org/10.1016/j.bbrc.2011.08.068
  18. Glycosaminoglycans-binding cytokines and tumor vol.31, pp.8, 2011, https://doi.org/10.3724/SP.J.1008.2011.00898
  19. Changing Pathology with Changing Drugs: Tumors of the Gastrointestinal Tract vol.78, pp.2, 2011, https://doi.org/10.1159/000315535
  20. Identification of Dormancy-Associated MicroRNAs for the Design of Osteosarcoma-Targeted Dendritic Polyglycerol Nanopolyplexes vol.10, pp.2, 2016, https://doi.org/10.1021/acsnano.5b06189
  21. Angiogenic factors as potential drug target: Efficacy and limitations of anti-angiogenic therapy vol.1846, pp.1, 2014, https://doi.org/10.1016/j.bbcan.2014.05.002
  22. Inhibition of blood vessel formation in tumors by IL-18-polarized M1 macrophages vol.21, pp.3, 2016, https://doi.org/10.1111/gtc.12329
  23. Head neck squamous cell carcinoma c-Met+ cells display cancer stem cell properties and are responsible for cisplatin-resistance and metastasis vol.129, pp.10, 2011, https://doi.org/10.1002/ijc.25927
  24. Progress in emerging therapies for advanced prostate cancer vol.39, pp.3, 2013, https://doi.org/10.1016/j.ctrv.2012.09.005
  25. Gene expression profiles and signaling mechanisms in α2B-adrenoceptor-evoked proliferation of vascular smooth muscle cells vol.11, pp.1, 2017, https://doi.org/10.1186/s12918-017-0439-8
  26. A novel three-dimensional bone chip organ culture vol.17, pp.6, 2013, https://doi.org/10.1007/s00784-012-0833-y
  27. Decreased Serum Level of miR-146a as Sign of Chronic Inflammation in Type 2 Diabetic Patients vol.9, pp.12, 2014, https://doi.org/10.1371/journal.pone.0115209
  28. Anti-tumor effect of β-elemene in murine hepatocellular carcinoma cell line H22 depends on the level of c-Met downregulation vol.2, pp.2, 2012, https://doi.org/10.1016/j.bionut.2012.01.005
  29. New molecularly targeted therapies against advanced hepatocellular carcinoma: From molecular pathogenesis to clinical trials and future directions vol.45, pp.10, 2015, https://doi.org/10.1111/hepr.12459
  30. Study of growth factors and receptors in carcinoma ex pleomorphic adenoma 2010, https://doi.org/10.1111/j.1600-0714.2009.00858.x
  31. Targeted Therapies for Prostate Cancer vol.33, pp.7, 2015, https://doi.org/10.3109/07357907.2015.1033105
  32. Isolation and epithelial co-culture of mouse renal peritubular endothelial cells vol.15, pp.1, 2014, https://doi.org/10.1186/s12860-014-0040-6
  33. c-Met in chromophobe renal cell carcinoma vol.34, pp.2, 2017, https://doi.org/10.1007/s12032-016-0874-1
  34. Hepatocyte Growth Factor and Lung Fibrosis vol.9, pp.3, 2012, https://doi.org/10.1513/pats.201202-018AW
  35. Combined SVM-based and docking-based virtual screening for retrieving novel inhibitors of c-Met vol.46, pp.9, 2011, https://doi.org/10.1016/j.ejmech.2011.05.031
  36. Remodeling of angiogenesis and lymphangiogenesis in cervical cancer development vol.10, pp.3, 2016, https://doi.org/10.1134/S1990750816030094
  37. The absolute bioavailability investigation of LS177 in rats using ultra-performance liquid chromatography-tandem mass spectrometry vol.7, pp.9, 2015, https://doi.org/10.1002/dta.1779
  38. The c-Met receptor: Implication for targeted therapies in colorectal cancer vol.39, pp.5, 2017, https://doi.org/10.1177/1010428317699118
  39. CoMFA and CoMSIA studies on 6,7-disubstituted-4-phenoxyquinoline derivatives as c-Met kinase inhibitors and anticancer agents vol.24, pp.12, 2015, https://doi.org/10.1007/s00044-015-1450-5
  40. Plasma and cerebrospinal fluid pharmacokinetics of MP470 in non-human primates vol.67, pp.4, 2011, https://doi.org/10.1007/s00280-010-1380-3
  41. An intramolecular G-quadruplex structure formed in the human MET promoter region and its biological relevance vol.55, pp.5, 2016, https://doi.org/10.1002/mc.22330
  42. Impact of the small molecule Met inhibitor BMS-777607 on the metastatic process in a rodent tumor model with constitutive c-Met activation vol.29, pp.3, 2012, https://doi.org/10.1007/s10585-011-9447-z
  43. Discovering potent inhibitors against c-Met kinase: molecular design, organic synthesis and bioassay vol.10, pp.2, 2012, https://doi.org/10.1039/C1OB06186K
  44. Halofuginone inhibits phosphorylation of SMAD-2 reducing angiogenesis and leukemia burden in an acute promyelocytic leukemia mouse model vol.34, pp.1, 2015, https://doi.org/10.1186/s13046-015-0181-2
  45. What Can Ecology Teach Us About Cancer? vol.4, pp.5, 2011, https://doi.org/10.1593/tlo.11154
  46. A Comparative Study of Carotid Atherosclerotic Plaque Microvessel Density and Angiogenic Growth Factor Expression in Symptomatic Versus Asymptomatic Patients vol.39, pp.4, 2010, https://doi.org/10.1016/j.ejvs.2009.12.012
  47. In vitro analysis of radiation-induced dermal wounds vol.142, pp.6, 2010, https://doi.org/10.1016/j.otohns.2010.01.033
  48. Protective effects of HGF gene-expressing human mesenchymal stem cells in acetaminophen-treated hepatocytes vol.33, pp.5-6, 2015, https://doi.org/10.3109/08977194.2015.1080695
  49. Korean Red Ginseng extract induces angiogenesis through activation of glucocorticoid receptor vol.41, pp.4, 2017, https://doi.org/10.1016/j.jgr.2016.08.011
  50. In vitro models for the evaluation of angiogenic potential in bone engineering vol.32, pp.1, 2011, https://doi.org/10.1038/aps.2010.143
  51. Heparanase Plays a Dual Role in Driving Hepatocyte Growth Factor (HGF) Signaling by Enhancing HGF Expression and Activity vol.286, pp.8, 2011, https://doi.org/10.1074/jbc.M110.183277
  52. The angiogenic process as a therapeutic target in cancer vol.81, pp.10, 2011, https://doi.org/10.1016/j.bcp.2011.02.016
  53. Targeting MET in cancer: rationale and progress vol.12, pp.2, 2012, https://doi.org/10.1038/nrc3205
  54. MET and VEGF: synergistic targets in castration-resistant prostate cancer vol.13, pp.10, 2011, https://doi.org/10.1007/s12094-011-0719-5
  55. NK4 therapy: a new approach to target angiogenesis and inflammation in rheumatoid arthritis vol.15, pp.5, 2013, https://doi.org/10.1186/ar4320
  56. Molecular Targeted Therapy for Hepatocellular Carcinoma: Present Status and Future Directions vol.38, pp.7, 2015, https://doi.org/10.1248/bpb.b15-00231
  57. Activity of XL184 (Cabozantinib), an Oral Tyrosine Kinase Inhibitor, in Patients With Medullary Thyroid Cancer vol.29, pp.19, 2011, https://doi.org/10.1200/JCO.2010.32.4145
  58. Comment on “Effect of transferred NK4 gene on proliferation, migration, invasion, and apoptosis of human prostate cancer DU145 cells” by Dan Yue et al. in Asian Journal of Andrology vol.12, pp.3, 2010, https://doi.org/10.1038/aja.2010.26
  59. Expression of hepatocyte growth factor and c-Met in non-small-cell lung cancer and association with lymphangiogenesis vol.11, pp.4, 2015, https://doi.org/10.3892/mmr.2014.3071
  60. Hepatocyte Growth Factor Family Negatively Regulates Hepatic Gluconeogenesis via Induction of Orphan Nuclear Receptor Small Heterodimer Partner in Primary Hepatocytes vol.284, pp.42, 2009, https://doi.org/10.1074/jbc.M109.022244
  61. Receptor-type Protein Tyrosine Phosphatase β (RPTP-β) Directly Dephosphorylates and Regulates Hepatocyte Growth Factor Receptor (HGFR/Met) Function vol.286, pp.18, 2011, https://doi.org/10.1074/jbc.M110.212597
  62. Priming Dental Pulp Stem Cells With Fibroblast Growth Factor-2 Increases Angiogenesis of Implanted Tissue-Engineered Constructs Through Hepatocyte Growth Factor and Vascular Endothelial Growth Factor Secretion vol.5, pp.3, 2016, https://doi.org/10.5966/sctm.2015-0166
  63. The heparanase/syndecan-1 axis in cancer: mechanisms and therapies vol.280, pp.10, 2013, https://doi.org/10.1111/febs.12168
  64. Gene-expression profiling of microdissected breast cancer microvasculature identifies distinct tumor vascular subtypes vol.14, pp.4, 2012, https://doi.org/10.1186/bcr3246
  65. Role of c-Met/Phosphatidylinositol 3-Kinase (PI3k)/Akt Signaling in Hepatocyte Growth Factor (HGF)-mediated Lamellipodia Formation, Reactive Oxygen Species (ROS) Generation, and Motility of Lung Endothelial Cells vol.289, pp.19, 2014, https://doi.org/10.1074/jbc.M113.527556
  66. A novel c-Met inhibitor, MK8033, synergizes with carboplatin plus paclitaxel to inhibit ovarian cancer cell growth vol.29, pp.5, 2013, https://doi.org/10.3892/or.2013.2329
  67. The role of FGF-2/HGF and fibronectin matrix on pleomorphic adenoma myoepithelial cell morphology and immunophenotype: anin vitrostudy vol.33, pp.1, 2015, https://doi.org/10.3109/08977194.2014.957758
  68. Recent advances in the development of dual VEGFR and c-Met small molecule inhibitors as anticancer drugs vol.108, 2016, https://doi.org/10.1016/j.ejmech.2015.12.016
  69. Developing c-MET pathway inhibitors for cancer therapy: progress and challenges vol.16, pp.1, 2010, https://doi.org/10.1016/j.molmed.2009.11.005
  70. VEGF-A/HGF induce Prox-1 expression in the chick embryo chorioallantoic membrane lymphatic vasculature vol.10, pp.3, 2010, https://doi.org/10.1007/s10238-009-0085-6
  71. Cell delivery of Met docking site peptides inhibit angiogenesis and vascular tumor growth vol.29, pp.38, 2010, https://doi.org/10.1038/onc.2010.267
  72. Effect of lanthanum chloride on growth of breast cancer cells and regulation of c-met transcription vol.3, pp.3, 2009, https://doi.org/10.1007/s11684-009-0053-2
  73. Focus on “Gonadotropin-releasing hormone-regulated chemokine expression in human placentation” vol.297, pp.1, 2009, https://doi.org/10.1152/ajpcell.00209.2009
  74. Cross talk between primary human renal tubular cells and endothelial cells in cocultures vol.302, pp.8, 2012, https://doi.org/10.1152/ajprenal.00621.2011
  75. MACC1 induces metastasis in ovarian carcinoma by upregulating hepatocyte growth factor receptor c-MET vol.8, pp.2, 2014, https://doi.org/10.3892/ol.2014.2184
  76. Hepatocyte growth factor increases the invasive potential of PC-3 human prostate cancer cells via an ERK/MAPK and Zeb-1 signaling pathway vol.11, pp.1, 2015, https://doi.org/10.3892/ol.2015.3943
  77. Genome-Wide Association Study for Endothelial Growth Factors vol.8, pp.2, 2015, https://doi.org/10.1161/CIRCGENETICS.114.000597
  78. Aptamer-based search for correlates of plasma and serum water T2: implications for early metabolic dysregulation and metabolic syndrome vol.6, pp.1, 2018, https://doi.org/10.1186/s40364-018-0143-x