Effects of Different Levels of Supplementary Alpha-amylase on Digestive Enzyme Activities and Pancreatic Amylase mRNA Expression of Young Broilers

  • Jiang, Zhengyu (College of Animal Science and Technology, Nanjing Agricultural University) ;
  • Zhou, Yanmin (College of Animal Science and Technology, Nanjing Agricultural University) ;
  • Lu, Fuzeng (College of Animal Science and Technology, Nanjing Agricultural University) ;
  • Han, Zhaoyu (College of Animal Science and Technology, Nanjing Agricultural University) ;
  • Wang, Tian (College of Animal Science and Technology, Nanjing Agricultural University)
  • Received : 2007.02.14
  • Accepted : 2007.05.20
  • Published : 2008.01.01


Four hundred and forty 1-day-old Arbor Acre broilers were fed commercial starter diets with 0, 250, 750 and 2,250 mg/kg of an alpha-amylase preparation from 1 to 21 days of age to investigate the effects of an exogenous enzyme on growth performance, activities of digestive enzymes in the pancreas and anterior intestinal contents and pancreatic amylase mRNA expression. Body weight gain (BWG) and average daily gain (ADG) increased linearly (p<0.01) with increasing levels of supplementary amylase but feed conversion ratio (FCR) was not affected. There was a negative quadratic change of protease and amylase in the small intestinal contents with the increase of supplementary amylase level. The activity of intestinal trypsin was also increased (p<0.05). Lipase was unaffected by amylase supplementation (p>0.05). The pancreatic protease, trypsin, and lipase were not affected by exogenous amylase levels. Consistent with the tendency for a linear depression of amylase activity, pancreatic ${\alpha}$-amylase mRNA was down-regulated by dietary amylase supplementation. The present study suggested that oral administration of exogenous amylase affected activities of intestinal enzymes and the production of pancreatic digestive enzymes in a dose-dependent manner.


Supported by : National Science Foundation of China


  1. Inborr, J. 1990. Enzymes: catalysts for pig performance. Feed Manage. 41:22-30.
  2. Kullka, R. and D. Duksin. 1964. Patterns growth and ${\alpha}$-amylase activity in the developing chick pancreas. Biochem. Biophys. Acta. 91:506-514.
  3. Lonergan, P., A. Rizos, A. P. Gutierrez, P. M. Moriera, B. Pintado and J. de la Fuente. 2003. Temperal divergence in pattern of messenger RNA expression in bovine embryos cultured from the zyogte to blastocyst stage in vitro or in vivo. Biol. Reprod. 69:1424-1431.
  4. Lowry, O. H., N. J. Rosebrough, A. L. Farr and R. J. Randall. 1951. Protein measurement with Folin phenol reagent. J. Biol. Chem. 193:265-273.
  5. Mahagna, M., I. Nir, M. Larbier and Z. Nitsan. 1995. Effect of age and exogenous amylase and protease on development of the digestive tract, pancreatic enzyme activities and digestibility of nutrients in young meat-type chicks. Reprod. Nutr. Dev. 35:201-212.
  6. Murai, A., S. Satoh, J. Okumura and M. Furuse. 2000. Factors regulating amylase secretion from chicken pancreatic acini in vitro. Life Sci. 66:585-591.
  7. Nitsan, Z., G. Avraham, Z. Zoref and I. Nir. 1991. Growth and development of the digestive organs and some enzymes in broiler chicks after hatching. Br. Poult. Sci. 32:515-523.
  8. Nitsan, Z. and Z. Madar. 1978. The level and origin of amylase (EC in the digestive tract of chicks receving trypsin inhibitors in their diet. Br. J. Nutr. 40:235-241.
  9. Cowieson, A. J. 2005. Factors that affect the nutritive value of maize for broilers. Anim. Feed Sci. Technol. 119:293-305.
  10. Cowieson, A. J., T. Acamovic and M. R. Berford. 2006. Using the precision-feeding bioassay to determine the efficacy of exogenous enzymes- A new perspective. Anim. Feed Sci. Technol. 129:149-158.
  11. Erlanger, B. F., N. Kokowski and W. Cohen. 1961. The preparation and properties of two new chromogenic substrates of trypsin. Arch. Biochem. Biophys. 95:271-278.
  12. Glazer, B. and M. L. Steer. 1977. Requirements for activation of trypsinogen and chymotrypsinogen in rabbit pancreatic juice. Anal. Biochem. 77:130-140.
  13. Gracia, M. I., M. J. Aranibar, R. Lazaro, P. Medel and G. G. Mateos. 2003. Alpha-amylase supplementation of broiler diets based on corn. Poult. Sci. 82:436-442.
  14. Iji, P. A., K. Khumalo, S. Slippers and R. M. Gous. 2003. Intestinal function and body growth of broiler chickens fed on diets based on maize dried at different temperatures and supplemented with a microbial enzyme. Reprod. Nutr. Dev. 43:77-90.
  15. Acamovic, T. 2001. Commercial application of enzyme technology for poultry production. World's Poult. Sci. J. 57:225-243.
  16. Bedford, M. R. and K. Autio. 1996. Microscopic examination of feed and digesta from wheat-fed broiler chickens and its relation to bird performance. Poult. Sci. 75:1-14.
  17. Bedford, M. R. 2000. Exogenous enzymes in monogastric nutrition-their current value and future benefits. Anim. Feed Sci. Technol. 86:1-13.
  18. Bird, F. H. 1971. Distribution of trypsin and ${\alpha}$-amylase activities in the duodenum of the domestic fowl. Br. Poult. Sci. 12:373- 378.
  19. Brannon, P. M. 1990. Adaptation of the exocrine pancreas to diet. Annu. Rev. Nutr. 10:85-105.
  20. Brock, F. M., C. W. Forsberg and J. C. Buchanan-Smith. 1982. Proteolytic activity of rumen microorganism and effects of proteinase inhibitors. Appl. Environ. Microbiol. 44:561-569.
  21. Verduin, P. A., J. M. Punt and H. H. Kreutzer. 1973. Studies on the determination of lipase activity. Clinica. Chimica. Acta. 46:11- 19.
  22. Xu, M., J. H. Yao, Y. H. Wang and F. N. Wang. 2006. Influence of rumen escape starch on ${\alpha}$-amylase activity in pancreatic tissue and small intestinal digesta of lambs. Asian-Aust. J. Anim. Sci. 19:1749-1754.
  23. Wang, Z. R., S. Y. Qiao, W. Q. Lu and D. F. Li. 2005. Effects of enzyme supplementation on performance, nutrient digestibility, gastrointestional morphology, and volatile fatty acid profiles in the hindgut of broilers fed wheat-based diets. Poult. Sci. 84:875-881.
  24. Zanella, I., N. K. Sakomura, F. G. Silversides, A. Fiqueirdo and M. Pack. 1999. Effect of enzyme supplementation of broiler diets based on maize and soybeans. Poult. Sci. 78:561-568.
  25. Noy, Y. and D. Sklan. 1995. Digestion and absorption in the young chick. Poult. Sci. 74:366-373.
  26. Osman, A. M. and N. I. Tanios. 1983. The effect of heat on the intestinal and pancreatic levels of amylase and maltase of laying hens and broilers. Biochem. Physio. 75A:563-565.
  27. Piao, X. S., I. K. Han, J. H. Kim, T. Cho, Y. H. Kim and C. Liang. 1999. Effects of kemzyme, phytase and yeast supplementation on the growth performance and pollution reduction of broiler chicks. Asian-Aust. J. Anim. Sci. 12:36-41.
  28. Rideau, N., Z. Nitzan and P. Mongin. 1983. Activities of amylase, trypsin and lipase in the pancreas and small intestine of the laying hen during egg formation. Br. Poult. Sci. 24:1-8.
  29. Ritz, C. W., R. M. Halet, B. B. Self and D. M. Denbow. 1995. Endogenous amylase levels and response to supplementation feed enzymes in male turkeys from hatch to eight weeks of age. Poult. Sci. 74:1317-1322.
  30. Rothman, S., C. Liebow and L. Isenman. 2002. Conservation of digestive enzymes. Physiol. Rev. 82:1-18.
  31. Sarıcicek, B. Z., U. Kılıç and A. V. Garipoglu. 2005. Replacing soybean meal (SBM) by canola meal (CM): The effects of multi-enzyme and phytase supplementation on the performance of growing and laying quails. Asian-Aust. J. Anim. Sci 18:1457-1463.
  32. SAS. 1991. SAS User's Guide Version 6.03. SAS Institute, Cary, NC.
  33. Selle, P. H., V. Ravindran, G. Ravindran and W. L. Bryden. 2007. Effects of dietary lysine and microbial phytase on growth performance and nutrient utilisation of broiler chickens. Asian-Aust. J. Anim. Sci. 20:1100-1107.
  34. Somogyi, M. 1960. Modification of two methods for the assay of amylase. Clin. Chem. 6:23-27.
  35. Swanson, K. C., J. C. Matthews, A. D. Matthews, J. A. Matthews, J. A. Howell, C. J. Richards and D. L. Harmon. 2000. Dietary carbohydrate source and energy intake influence the expression of pancreatic ${\alpha}$-amylase in lambs. J. Nutr. 130:2157-2165.
  36. Ashild, K. and L. S. Jerry. 1989. Influence of age on lipase, amylase, and protease activities in pancreatic tissue and intestinal contents of young turkeys. Poult. Sci. 68:1561-1568.
  37. Cowieson, A. J., T. Acamovic and M. R. Bedford. 2003. Supplementation of diets containing pea meal with exogenous enzymes: Effects on weight gain, feed conversion, nutrient digestibility and gross morphology of the gastrointestinal tract of growing broiler chicks. Br. Poult. Sci. 44:427-437.
  38. Iwamori, M., Y. Iwamori and N. Ito. 1997. Sulfated lipids as inhibitors of pancreatic trypsin and chymotrypsin in epithelium of the mammalian digestive tract. Biochem. Biophys. Res. Commun. 237:262-265.
  39. Onderci, M., N. Sahin, K. Sahin, G. Gikim, A. Aydin, I. Ozercan and S. Aydin. 2006. Efficacy of supplementation of ${\alpha}$-amylaseproducing bacterial culture on the performance, nutrient use, and gut morphology of broiler chickens fed a corn-based diet. Poult. Sci. 85:505-510.

Cited by

  1. Effect of age and diet composition on activity of pancreatic enzymes in birds vol.183, pp.5, 2013,
  2. Functional patterns of exogenous enzymes in different feed ingredients vol.69, pp.04, 2013,
  3. The effect of protease, amylase, and nonstarch polysaccharide-degrading enzyme supplementation on nutrient utilization and growth performance of broiler chickens fed corn-soybean meal-based diets vol.93, pp.7, 2014,
  4. Starch digestion capacity of poultry1 vol.93, pp.9, 2014,
  5. Enhancing the nutritional value of soybeans for poultry through supplementation with new-generation feed enzymes vol.72, pp.02, 2016,
  6. Supplementation of amylase combined with glucoamylase or protease changes intestinal microbiota diversity and benefits for broilers fed a diet of newly harvested corn vol.9, pp.1, 2018,
  7. A mono-component microbial protease improves performance, net energy, and digestibility of amino acids and starch, and upregulates jejunal expression of genes responsible for peptide transport in broilers fed corn/wheat-based diets supplemented with xylanase and phytase vol.98, pp.3, 2018,
  8. Anti-nutrients Reduce Poultry Productivity: Influence of Trypsin Inhibitors on Pancreas vol.12, pp.1, 2018,
  9. Fucoidan-rich Sargassum wightii extract supplemented with α-amylase improve growth and immune responses of Labeo rohita (Hamilton, 1822) fingerlings pp.1573-5176, 2019,