해양 어류 Mugil cephalus 유래의 에폭사이드 가수분해효소를 이용한 라세믹 styrene oxide의 입체선택적 분할 반응

Enantioselective Kinetic Resolution of Racemic Styrene Oxide using Recombinant Marine Fish Epoxide Hydrolase of Mugil cephalus

  • 최성희 (경성대학교 공과대학 식품생명공학과) ;
  • 김희숙 (경성대학교 공과대학 식품생명공학과) ;
  • 이은열 (경희대학교 환경.응용화학대학 화학공학과)
  • Choi, Sung Hee (Dept. of Food Science and Biotechnology, Kyungsung University) ;
  • Kim, Hee Sook (Dept. of Food Science and Biotechnology, Kyungsung University) ;
  • Lee, Eun Yeol (Dept. Of Chem. Eng., Kyung Hee University)
  • 투고 : 2008.05.08
  • 심사 : 2008.09.16
  • 발행 : 2008.10.10

초록

해양 어류인 Mugil cephalus로부터 에폭사이드 가수분해효소(epoxide hydrolase, EH) 유전자를 PCR을 이용하여 클로닝하고, pColdI 및 pET-21b(+) 발현벡터에 삽입시켜 재조합 Escherichia coli 생촉매를 개발하여 각각에 대하여 가수분해 활성을 비교하였다. 재조합 E. coli 생촉매 $10mg\;dcw\;mL^{-1}$을 사용하여 20 mM 라세믹 styrene oxide를 입체선택적 가수분해를 한 결과, (R)-styrene oxide 기질에 대해서 입체선택성을 보였다. pET-21b(+)를 발현벡터로 사용하여 M. cephalus의 EH 유전자를 저온 발현시킨 재조합 E. coli 생촉매를 사용하여, 약 40 min 반응을 통해 광학순도 99% ee (enantiomeric excess) 이상인 (S)-styrene oxide를 최종 수율 24.5% (이론수율 50%)로 제조할 수 있었다.

과제정보

연구 과제 주관 기관 : 국토해양부

참고문헌

  1. R. A. Sheldon, Chirotechnology, Marcel Dekker, New York (1993).
  2. A. N. Collins, G. N. Sheldrake, and J. Grosby, Chirality in industry, John Wiley & Sons, New York, USA (1992)
  3. P. Besse and H. Veschambre, Tetrahedron, 50, 8885 (1994) https://doi.org/10.1016/S0040-4020(01)85362-X
  4. M. Tokunaga, J. F. Larrow, F. Kakiuchi, and E. N. Jacobsen, Science, 277, 936 (1997) https://doi.org/10.1126/science.277.5328.936
  5. Y. Gao, R. M. Hanson, J. M. Klunder, S. Y. Ko, H. masamune, and K. B. Sharpless, J. Am. Chem. Soc., 109, 5765 (1987) https://doi.org/10.1021/ja00253a032
  6. E. Y. Lee, W. J. Choi, S. J. Yoon, H. S. Kim, and C. Y. Choi, Kor. J. Biotechnol. Bioeng., 14, 259 (1999)
  7. R. V. A. Orru and K. Faber, Current Opinion in Chem. Biology., 3, 16 (1999) https://doi.org/10.1016/S1367-5931(99)80004-0
  8. A. Archelas and R. Furstoss, Topics in Current Chem., 200, 159 (1999) https://doi.org/10.1007/3-540-68116-7_6
  9. J. H. Lutje Spelberg, J. E. T. Van Hylckama Vlieg, T. Bosma, R. M. Kellogg, and D. B. Janssen, Tetrahedron Asymmetry, 10, 2863 (1999) https://doi.org/10.1016/S0957-4166(99)00308-0
  10. J. H. Lutje Spelberg, J. E. T. Van Hylckama Vlieg, L. Tang, D. B. Janssen, and R. M. Kellogg, Organic Lett., 3, 41 (2001) https://doi.org/10.1021/ol0067540
  11. Z. Liu, J. Michel, Z. Wang, B. Witholt, and Z. Li, Tetrahedron Asymmetry, 17, 47 (2006) https://doi.org/10.1016/j.tetasy.2005.11.018
  12. C. A. Weijers, P. Meeuwse, R. L. Herpers, M. C. Franssen, and E. J. Sudholter, J. Org Chem., 70, 6639 (2005) https://doi.org/10.1021/jo050533w
  13. A. Archelas and R. Furstoss, Curr Opin Biol., 5, 112 (2001) https://doi.org/10.1016/S1367-5931(00)00179-4
  14. S. J. Lee, H. S. Kim, S. J. Kim, S. H. Park, B. J. Kim, Michael L. Shuler, and E. Y. Lee, Biotechnol Lett., 29, 237 (2007) https://doi.org/10.1007/s10529-006-9222-4
  15. G. Qing, L. C. Ma, A. Khorchid, G. V. T. Swapna, T. K. Mal, M. M. Takayama, B. Xia, S. Phadtare, H. Ke, T. Acton, G. T. Montelione, M. Ikura, and M. Inouye, Nature Biotechnol., 22, 877 (2004) https://doi.org/10.1038/nbt984
  16. T. Sakai, I. kawabata, T. Kishimoto, T. Ema, and M. Utaka, J. Org. Chem., 62, 4906 (1997) https://doi.org/10.1021/jo970581j
  17. E. J. de Vries and D. B. Janssen, Current Opinion Biotechnol., 14, 414 (2003) https://doi.org/10.1016/S0958-1669(03)00102-2