Enantioselective Kinetic Resolution of Racemic Styrene Oxide using Recombinant Marine Fish Epoxide Hydrolase of Mugil cephalus

해양 어류 Mugil cephalus 유래의 에폭사이드 가수분해효소를 이용한 라세믹 styrene oxide의 입체선택적 분할 반응

  • Choi, Sung Hee (Dept. of Food Science and Biotechnology, Kyungsung University) ;
  • Kim, Hee Sook (Dept. of Food Science and Biotechnology, Kyungsung University) ;
  • Lee, Eun Yeol (Dept. Of Chem. Eng., Kyung Hee University)
  • 최성희 (경성대학교 공과대학 식품생명공학과) ;
  • 김희숙 (경성대학교 공과대학 식품생명공학과) ;
  • 이은열 (경희대학교 환경.응용화학대학 화학공학과)
  • Received : 2008.05.08
  • Accepted : 2008.09.16
  • Published : 2008.10.10

Abstract

The microsomal epoxide hydrolase gene (referred to as mMCEH) of Mugil cephalus was cloned by PCR, and then inserted to pColdI and pET-21b(+) vector, respectively. The recombinant E. coli possessing the recombinant plasmids exhibited the enantioperference toward (R)-styrene oxide. When enantioselective kinetic resolutions were conducted with 20 mM racemic styrene oxide, enantiopure (S)-styrene oxide was obtained with high enantiopurity more than 99% enantiomeric excess (ee) and 24.50% yield by using the recombinant E. coli harboring pET-21b(+)/mMCEH.

Acknowledgement

Supported by : 국토해양부

References

  1. R. A. Sheldon, Chirotechnology, Marcel Dekker, New York (1993).
  2. A. N. Collins, G. N. Sheldrake, and J. Grosby, Chirality in industry, John Wiley & Sons, New York, USA (1992)
  3. P. Besse and H. Veschambre, Tetrahedron, 50, 8885 (1994) https://doi.org/10.1016/S0040-4020(01)85362-X
  4. M. Tokunaga, J. F. Larrow, F. Kakiuchi, and E. N. Jacobsen, Science, 277, 936 (1997) https://doi.org/10.1126/science.277.5328.936
  5. Y. Gao, R. M. Hanson, J. M. Klunder, S. Y. Ko, H. masamune, and K. B. Sharpless, J. Am. Chem. Soc., 109, 5765 (1987) https://doi.org/10.1021/ja00253a032
  6. E. Y. Lee, W. J. Choi, S. J. Yoon, H. S. Kim, and C. Y. Choi, Kor. J. Biotechnol. Bioeng., 14, 259 (1999)
  7. R. V. A. Orru and K. Faber, Current Opinion in Chem. Biology., 3, 16 (1999) https://doi.org/10.1016/S1367-5931(99)80004-0
  8. A. Archelas and R. Furstoss, Topics in Current Chem., 200, 159 (1999) https://doi.org/10.1007/3-540-68116-7_6
  9. J. H. Lutje Spelberg, J. E. T. Van Hylckama Vlieg, T. Bosma, R. M. Kellogg, and D. B. Janssen, Tetrahedron Asymmetry, 10, 2863 (1999) https://doi.org/10.1016/S0957-4166(99)00308-0
  10. J. H. Lutje Spelberg, J. E. T. Van Hylckama Vlieg, L. Tang, D. B. Janssen, and R. M. Kellogg, Organic Lett., 3, 41 (2001) https://doi.org/10.1021/ol0067540
  11. Z. Liu, J. Michel, Z. Wang, B. Witholt, and Z. Li, Tetrahedron Asymmetry, 17, 47 (2006) https://doi.org/10.1016/j.tetasy.2005.11.018
  12. C. A. Weijers, P. Meeuwse, R. L. Herpers, M. C. Franssen, and E. J. Sudholter, J. Org Chem., 70, 6639 (2005) https://doi.org/10.1021/jo050533w
  13. A. Archelas and R. Furstoss, Curr Opin Biol., 5, 112 (2001) https://doi.org/10.1016/S1367-5931(00)00179-4
  14. S. J. Lee, H. S. Kim, S. J. Kim, S. H. Park, B. J. Kim, Michael L. Shuler, and E. Y. Lee, Biotechnol Lett., 29, 237 (2007) https://doi.org/10.1007/s10529-006-9222-4
  15. G. Qing, L. C. Ma, A. Khorchid, G. V. T. Swapna, T. K. Mal, M. M. Takayama, B. Xia, S. Phadtare, H. Ke, T. Acton, G. T. Montelione, M. Ikura, and M. Inouye, Nature Biotechnol., 22, 877 (2004) https://doi.org/10.1038/nbt984
  16. T. Sakai, I. kawabata, T. Kishimoto, T. Ema, and M. Utaka, J. Org. Chem., 62, 4906 (1997) https://doi.org/10.1021/jo970581j
  17. E. J. de Vries and D. B. Janssen, Current Opinion Biotechnol., 14, 414 (2003) https://doi.org/10.1016/S0958-1669(03)00102-2