Rosmarinic Acid Down-Regulates the LPS-Induced Production of Monocyte Chemoattractant Protein-1 (MCP-1) and Macrophage Inflammatory Protein-1α (MIP-1α) via the MAPK Pathway in Bone-Marrow Derived Dendritic Cells

  • Kim, Hyung Keun (Department of Orthopaedics, Chonnam National University, Hwasun Hospital) ;
  • Lee, Jae Joon (Department of Orthopaedics, Chonnam National University, Hwasun Hospital) ;
  • Lee, Jun Sik (Department of Microbiology and Immunology, College of Medicine, Pusan National University) ;
  • Park, Yeong-Min (Department of Microbiology and Immunology, College of Medicine, Pusan National University) ;
  • Yoon, Taek Rim (Department of Orthopaedics, Chonnam National University, Hwasun Hospital)
  • Received : 2008.07.28
  • Accepted : 2008.09.17
  • Published : 2008.12.31


In the present study, we investigated whether rosmarinic acid, which has been suggested to exhibit anti-inflammatory properties, can suppress the expressions of monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-$1{\alpha}$ ($MIP-1{\alpha}$) via the MAPK pathway in LPS-stimulated bone marrow-derived dendritic cells (BMDCs) in the presence of GM-CSF and IL-4 in media. The effects of rosmarinic acid were investigated in BMDCs with respect to the following; cytotoxicity, surface molecule expression, dextran-FITC uptake, cell migration, chemokine gene expression, and the MAPK signaling pathway. Rosmarinic acid was found to significantly inhibit the expressions of CD80, CD86, MHC class I, and MHC class II in LPS-stimulated mature BMDCs, and rosmarinic acid-treated BMDCs were found to be highly efficient with regards to antigen capture via mannose receptor-mediated endocytosis. In addition, rosmarinic acid reduced cell migration by inducing the expression of a specific chemokine receptor on LPS-induced mature BMDCs. Rosmarinic acid also significantly reduced the expressions of MCP-1 and $MIP-1{\alpha}$ induced by LPS in BMDCs and inhibited LPS-induced activation of MAPK and the nuclear translocation of $NF-{\kappa}B$. These findings broaden current perspectives concerning our understanding of the immunopharmacological functions of rosmarinic acid, and have ramifications that concern the development of therapeutic drugs for the treatment of DC-related acute and chronic diseases.


dendritic cells;MAPK pathway;MCP-1;$MIP-1{\alpha}$;Rosmarinic acid


Supported by : Chonnam national University Hospital


  1. Baggiolini, M. (2001). Chemokines in pathology and medicine. J. Intern. Med. 250, 91-104
  2. Campbell, J.J., Bowman, E. P., Murphy, K., Youngman, K.R., Siani, M.A., Thompson, D.A., Wu, L., Zlotnik, A, and Butcher, E.C. (1998). 6-C-kine (SLC), a lymphocyte adhesion-triggering chemokine expressed by high endothelium, is an agonist for the MIP-313 receptor CCR7. J. Cell BioI. 141,1053-1059
  3. Crowley, M., Inaba, K., and Steinman, R.M. (1990). Dendritic cells are the principal cells in mouse spleen bearing immunogenic fragments of foreign proteins. J. Exp. Med. 172,383-386
  4. Cullen, J.P., Morrow, D., Jin, Y., Curley, B., Robinson, A, Sitzmann, J'v., Cahill, P.A., and Redmond, E.M. (2007). Resveratrol, a polyphenolic phytostilbene, inhibits endothelial monocyte chemotactic protein-1 synthesis and secretion. J. Vase. Res. 44, 75-84
  5. Inaba, K., Inaba, M., Romani, N., Aya, H., Deguchi, M., Ikehara, S., Muramatsu, S., and Steinman, R.M. (1992). Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 176,1693-1702
  6. Ito, H., Miyazaki, T., Ono, M., and Sakurai, H. (1998). Antiallergic activities of rebdosiin and its related compounds: chemical and biochemical evalutions. Bioorg. Med. Chern. 6, 1051-1056
  7. Lee, J., Jung, E., Kim, Y., Lee, J., Park, J., Hong, S., Hyun, C.G., Park, D., and Kim, Y.S. (2006). Rosmarinic acid as a downstream inhibitor of IKK-beta in TNF-alpha-induced upregulation of CCL 11 and CCR3. Br. J. Pharmacol. 148,366-375
  8. Moser, B., and Loetscher, P. (2001). Lymphocyte traffic control by chemokines. Nat. Immunol. 2,123-128
  9. Sahu, A, Rawal, N., and Pangburn, MK (1999). Inhibition of complement by covalent attachment of rosmarinic acid to activated C3b. Biochem. Pharmacol. 57, 1439-1446
  10. Steinman, R.M. (1991). The dendritic cell system and its role in immunogenicity. Annu. Rev. Immunol. 9,271-296
  11. Takayama, 1., Morelli, AE., Onai, N., Hirao, M., Matsushima, K., Tahara, H., and Thomson, AW. (2001). Mammalian and viral IL-10 enhance C-C chemokine receptor 5 but down-regulate CC chemokine receptor 7 expression by myeloid dendritic cells: impact on chemotactic responses and in vivo homing ability. J. Immunol. 166,7136-7143
  12. Austyn, J.M. (1998). Dendritic cells, Curr. Opin. Hematol. 5,3-15.
  13. Lee, SK, Choi, BK, Kang, vis, Kim, Y.H., Park, HY., Kim, K.H., and Kwon, B.S. (2008). MCP-1 derived from stromal keratocyte induces corneal infiltration of CD4+ T cells in herpetic stromal keratitis. Mol. Cells 26,67-73
  14. Makino, T., Furuta, A., Fujii, H., Nakagawa, T., Wakushima, H., Saito, K., and Kano, Y. (2001). Effect of oral treatment of Perilla frutescens and its constituents on type-I allergy in mice. BioI. Pharm. Bull. 24,1206-1209
  15. Kodaira, Y., Ikuta, K., Tanaka, S., and Yolomuro, K. (1999). Antigen-driven clonal accumulation of peritoneal T cells in vivo. Immunol. Invest. 28, 137-148
  16. Sallusto, F., Palermo, B., Lenig, D., Miettinen, M., Matikainen, S., Julkunen, I., Forster, R., Burgstahler, R., Lipp, M., and Lanzavecchia, A (1999). Distinct patterns and kinetics of chemokine production regulate dendritic cell function. Eur. J. Immunol. 29,1617-1625<1617::AID-IMMU1617>3.0.CO;2-3
  17. Nakamura, Y., Ohto, Y., Murakami, A., and Ohigashi, H. (1998). Superoxide scavenging activity of rosmarinic acid from Perilla Frutescens Britton Var. acuta f. viridis. J. Agric. Food Chern. 46, 4545-4550
  18. Qiao, S., Li, W., Tsubouchi, R., Haneda, M., Murakami, K., Takeuchi, F., Nisimoto, Y., and Yoshino, M. (2005). Rosmarinic acid inhibits the formation of reactive oxygen and nitrogen species in RAW264.7 macrophages. Free Radic. Res. 39, 995-1003
  19. AI-Sereiti, M.R., Abu-Amer, K.M., and Sen, P. (1999). Pharmacology of rosemary (Rosmarinus officinal is Linn.) and its therapeutic potentials. Indian J. Exp. BioI. 37, 124-130
  20. Kim, GY., Kim, K.H., Lee, S.H., Yoon, M.S., Lee, H.J., Moon, D.O., Lee, C.M., Ahn, S.C., Park, Y.C., and Park, Y.M. (2005a). Curcumin inhibits immunostimulatory function of dendritic cells: MAPKs and translocation of NF-kappa B as potential targets, J. Immunol. 174, 8116-8124
  21. Porgador, A., and Gilboa, E. (1995). Bone marrow-generated dendritic cells pulsed with a class I-restricted peptides are potent inducers of cytotoxic T lymphocytes. J. Exp. Med. 182,255-260
  22. Salio, M., Cerundolo, V., and Lanzavecchia, A (2000). Dendritic cell maturation is induced by mycoplasma infection but not by necrotic cells. Eur. J. Immunol. 30, 705-708<705::AID-IMMU705>3.0.CO;2-P
  23. Forster, R., Schubel, A, Breitfeld, D., Kremmer, E., Renner-Muller, I., Wolf, E., and Lipp, M. (1999). CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99, 23-33
  24. McColl, S.R. (2002). Chemokines and dendritic cells: a crucial alliance. Immunol. Cell BioI. 80, 489-496
  25. Rock, K.L., and Clark, K. (1996). Analysis of the role of MHC class II presentation in the stimulation of cytotoxic T lymphocytes by antigens targeted into the exogenous antigen-MHC class I presentation pathway. J. Immunol. 156,3721-3726
  26. Sallusto, F., Cella, C., Danieli, C., and Lanzavecchia, A (1995). Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J. Exp. Med. 182,389-400
  27. Sallusto, F., Mackay, C.R., and Lanzavecchia, A (2000). The role of chemokine receptors in primary, effector, and memory immune responses. Annu. Rev. Immunol. 18,593-620
  28. Swarup, V., Ghosh, J., Ghosh, S., Saxena, A, and Basu, A (2007). Antiviral and anti-inflammatory effects of rosmarinic acid in an experimental murine model of Japanese encephalitis. Antimicrob. Agents Chemother. 51, 3367-3370
  29. Cera, M.R., Del Prete, A, Vecchi, A, Corada, M., Martin-Padura, I., Motoike, T., Tonelli, P., Bazzoni, G., Vermi, W., Gentili, F., et al. (2004). Increased DC trafficking to lymph nodes and contact hypersensitivity in junctional adhesion molecule-A-deficient mice. J. Clin. Invest. 114,729-738
  30. Sanbongi, C., Takano, H., Osakabe, N., Sasa, N., Natsume, M., Yanagisawa, R., Inoue, K., Kato, Y., Osawa, T., and Yoshikawa, T. (2003). Rosmarinic acid inhibits lung injury induced by diesel exhaust particles. Free Radic. BioI. Med. 34, 1060-1069
  31. Lee, J.S., Kim, S.G., Kim, HK, Lee, 1.H., Jeong, Y.I., Lee, C.M., Yoon, M.S., Na, Y.J., Suh, D.S., Park, N.C., et al. (2007). Silibinin polarizes Th1/Th2 immune responses through the inhibition of immunostimulatory function of dendritic cells. J. Cell. Physiol. 210, 385-397
  32. Sallusto, F., Lanzavecchia, A, and Mackay, C.R. (1998). Chemokines and chemokine receptors in T-cell priming and Th1/Th2mediated responses. Immunol. Today 19,568-574
  33. Zupko, I., Hohmann, J., Redei, D., Falkay, G., Janicsak, G., and Mathe, I. (2001). Antioxidant activity of leaves of Salvia species in enzyme-dependent and enzyme-independent systems of lipid peroxidation and their phenolic constituents. Planta Med. 67, 366-368
  34. Kim, D.S., Kim, H.R., Woo, E.R., Hong, S.T., Chae, H.J., and Chae, SW. (2005b). Inhibitory effects of rosmarinic acid on adriamycin-induced apoptosis in H9c2 cardiac muscle cells by inhibiting reactive oxygen species and the activations of c-Jun N-terminal kinase and extracellular signal-regulated kinase. Biochem. Pharmacol. 70,1066-1078
  35. An, H., Yu, Y., Zhang, M., Xu, H., Oi, R., Yan, X., Liu, S., Wang, W., Guo, Z., Guo, J., et al. (2002). Involvement of ERK, p38 and NFkappaB signal transduction in regulation of TLR2, TLR4 and TLR9 gene expression induced by lipopolysaccharide in mouse dendritic cells. Immunology 106, 38-45
  36. Colvin, B.L., Morelli, AE., Logar, AJ., Lau, AH., and Thomson, AW. (2004). Comparative evaluation of CC chemokine-induced migration of murine CD8alpha+ and CD8alpha- dendritic cells and their in vivo trafficking. J. Leukoc. BioI. 75,275-285
  37. Rescigno, M., Martino, M., Sutherland, C.L., Gold, M.R., and Ricciardi-Castagnoli, P. (1998). Dendritic cell survival and maturation are regulated by different signaling pathways. J. Exp. Med. 188,2175-2180
  38. Yoneyama, H., Matsuno, K., and Matsushimaa, K. (2005). Migration of dendritic cells. lnt, J. Hematol. 81,204-207
  39. Cella, M., Sallusto, F., and Lanzavecchia, A (1997). Origin, maturation and antigen-presenting function of dendritic cells. Curr. Opin. Immunol. 9, 10-16
  40. Osakabe, N., Yasuda, A., Natsume, M., Sanbongi, C., Kato, Y., Osawa, T., and Yoshikawa, T. (2002). Rosmarinic acid, a major polyphenolic component of Perilla frutescens, reduces lipopolysaccharide-(LPS-) induced liver injury in D-galactosamine- (0GaIN-) sensitized mice. Free Radic. BioI. Med. 33, 798-806
  41. Ludewig, B., Junt, 1., Hengartner, H., and Zinkernagel, R.M. (2001). Dendritic cells in autoimmune diseases. Curro Opin. Immunol. 13, 657-662
  42. Im, W., Kim, H., Yun, D., Seo, SY., Park, S.H., Locksley, R.M., and Hong, S. (2005). Cytokine reporter mouse system for screening novellL 12/23 p40-inducing compounds. Mol. Cells 20, 288-296