The Fast Skeletal Muscle Myosin Light Chain Is Differentially Expressed in Smooth Muscle Cells of OVA-challenged Mouse Trachea

  • Kim, Ho-Young (Genome Research Center for Allergy and Respiratory Diseases, Soonchunhyang University Hospital) ;
  • Rhim, TaiYoun (Genome Research Center for Allergy and Respiratory Diseases, Soonchunhyang University Hospital) ;
  • Ahn, Mi-Hyun (Genome Research Center for Allergy and Respiratory Diseases, Soonchunhyang University Hospital) ;
  • Yoon, Pyoung-Oh (Genome Research Center for Allergy and Respiratory Diseases, Soonchunhyang University Hospital) ;
  • Kim, Soo-Ho (Genome Research Center for Allergy and Respiratory Diseases, Soonchunhyang University Hospital) ;
  • Lee, Sang-Han (Department of Biochemistry, College of Medicine, Soonchunhyang University) ;
  • Park, Choon-Sik (Genome Research Center for Allergy and Respiratory Diseases, Soonchunhyang University Hospital)
  • Received : 2007.06.29
  • Accepted : 2007.07.26
  • Published : 2008.02.29

Abstract

In a search for new molecular pathways associated with asthma, we performed an mRNA differential display analysis using total RNA extracted from the tracheal tissues of ovalbumin (OVA)-challenged mice and sham controls. cDNAs corresponding to mRNAs for which expression levels were altered by OVA-challenge were isolate and sequenced. Twenty-eight genes differentially expressed in sham and OVA challenged mice were identified. A GenBank BLAST homology search revealed that they were related to cytoskeleton remodeling, transcription, protein synthesis and modification, energy production, and cell growth and differentiation. Two were selected for further characterization. Up-regulation of both the perinatal skeletal myosin heavy chain (skMHC) and fast skeletal muscle myosin light chain (skMLC) genes was confirmed by RT-PCR of trachea tissue from OVA challenged mice. Overexpression of skMLC protein was observed in the smooth muscle layers of OVA-challenged mice by immunohistochemistry, and the surface areas stained with skMLC antibody increased in the OVA-challenged mice. The overexpression of skMLC in murine asthma may be associated with the changes of bronchial smooth muscle.

Keywords

DD-PCR;OVA Induced Asthma;skMLC;Smooth Muscle

Acknowledgement

Supported by : Ministry of Health & Welfare

References

  1. Busse, W.W. and Rosenwasser, L.J. (2003). Mechanisms of asthma. J. Allergy Clin. Immunol. 111, S799-804 https://doi.org/10.1067/mai.2003.158
  2. Campbell, S. and Macqueen, G. (2004). The role of the hippocampus in the pathophysiology of major depression. J. Psychiatry Neurosci. 29, 417-426
  3. Collins, R.A., Sly, P.D., Turner, D.J., Herbert, C., and Kumar, R.K. (2003). Site of inflammation influences site of hyperresponsiveness in experimental asthma. Respir. Physiol. Neurobiol. 139, 51-61 https://doi.org/10.1016/j.resp.2003.09.003
  4. Dalla Libera, L., Podhorska-Okolow, M., Martin, B., Massimino, M.L., Brugnolo, R., and Cantini, M. (1997). Smooth muscle myosin light chain kinase is transiently expressed in skeletal muscle during embryogenesis and muscle regeneration both in vivo and in vitro. J. Muscle Res. Cell Motil. 18, 295-303 https://doi.org/10.1023/A:1018618008483
  5. Ebina, M., Takahashi, T., Chiba, T., and Motomiya, M. (1993). Cellular hypertrophy and hyperplasia of airway smooth muscles underlying bronchial asthma. A 3-D morphometric study. Am. Rev. Respir. Dis. 148, 720-726 https://doi.org/10.1164/ajrccm/148.3.720
  6. Hershko, A., Heller, H., Elias, S., and Ciechanover, A. (1983). Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. J. Biol. Chem. 258, 8206-8214
  7. Higginson, J., Wacherhage, H., Woods, N., Schjerling, P., Ratkevicius, A., Grunnet, N., and Quistorff, B. (2002). Blockades of mitogen-activated protein kinase and calcineurin both change fiber-type markers in skeletal muscle culture. Pflugers Arch. 445, 437-443 https://doi.org/10.1007/s00424-002-0939-1
  8. Kawashima, M., Nabeshima, Y., Obinata, T., and Fujii-Kuriyama, Y. (1987). A common myosin light chain is expressed in chicken embryonic skeletal, cardiac, and smooth muscles and in brain continuously from embryo to adult. J. Biol. Chem. 262, 14408-14414
  9. Kilty, I.C. and Vickers, P.J. (1999). Studies of differential gene expression in clinically derived eosinophil populations. Clin. Exp. Allergy 29, 1671-1680 https://doi.org/10.1046/j.1365-2222.1999.00676.x
  10. Lutz, G.J., Sirsi, S.R., Shapard-Palmer, S.A., Bremner, S.N., and Lieber, R.L. (2002). Influence of myosin isoforms on contractile properties of intact muscle fibers from Rana pipiens. Am. J. Physiol. Cell Physiol. 282, C835-844 https://doi.org/10.1152/ajpcell.00482.2001
  11. MacLean, J.A., Sauty, A., Luster, A.D., Drazen, J.M., and De Sanctis, G.T. (1999). Antigen-induced airway hyperresponsiveness, pulmonary eosinophilia, and chemokine expression in B cell-deficient mice. Am. J. Respir. Cell Mol. Biol. 20, 379-387 https://doi.org/10.1165/ajrcmb.20.3.3291
  12. Nieznanska, H., Nieznanski, K., and Stepkowski, D. (2002). The effects of the interaction of myosin essential light chain isoforms with actin in skeletal muscles. Acta Biochim. Pol. 49, 709-719
  13. Sacchetti, P., Mitchell, T.R., Granneman, J.G., and Bannon, M.J. (2001). Nurr1 enhances transcription of the human dopamine transporter gene through a novel mechanism. J. Neurochem. 76, 565-572 https://doi.org/10.1046/j.1471-4159.2001.00028.x
  14. Shou, Z., Yamada, K., Inazu, T., Kawata, H., Hirano, S., Mizutani, T., Yazawa, T., Sekiguchi, T., Yoshino, M., Kajitani, T., et al. (2003). Genomic structure and analysis of transcriptional regulation of the mouse zinc-fingers and homeoboxes 1 (ZHX1) gene. Gene 302, 83-94 https://doi.org/10.1016/S0378-1119(02)01093-4
  15. Wiggs, B.R., Moreno, R., Hogg, J.C., Hilliam, C., and Pare, P.D. (1990). A model of the mechanics of airway narrowing. J. Appl. Physiol. 69, 849-860
  16. De Sanctis, G.T., Merchant, M., Beier, D.R., Dredge, R.D., Grobholz, J.K., Martin, T.R., Lander, E.S., and Drazen, J.M. (1995). Quantitative locus analysis of airway hyperresponsiveness in A/J and C57BL/6J mice. Nat Genet. 11, 150-154 https://doi.org/10.1038/ng1095-150
  17. Muthuchamy, M., Gashev, A., Boswell, N., Dawson, N., and Zawieja, D. (2003). Molecular and functional analyses of the contractile apparatus in lymphatic muscle. FASEB J. 17, 920-922
  18. Puente-Polledo, L., Reglero, A., Gonzalez-Clemente, C., Rodriguez- Aparicio, L.B., and Ferrero, M.A. (1998). Biochemical conditions for the production of polysialic acid by Pasteurella haemolytica A2. Glycoconj J. 15, 855-861 https://doi.org/10.1023/A:1006902931032
  19. Nemoto, Y. and De Camilli P. (1999). Recruitment of an alternatively spliced form of synaptojanin 2 to mitochondria by the interaction with the PDZ domain of a mitochondrial outer membrane protein. EMBO J. 18, 2991-3006 https://doi.org/10.1093/emboj/18.11.2991
  20. Herring, B.P., Dixon, S., and Gallagher, P.J. (2000). Smooth muscle myosin light chain kinase expression in cardiac and skeletal muscle. Am. J. Physiol. Cell Physiol. 279, C1656-1664
  21. Roche, W.R., Beasley, R., Williams, J.H., and Holgate, S.T. (1989). Subepithelial fibrosis in the bronchi of asthmatics. Lancet 1, 520-524
  22. Taubman, M.B., Grant, J.W., and Nadal-Ginard, B. (1987). Cloning and characterization of mammalian myosin regulatory light chain (RLC) cDNA: the RLC gene is expressed in smooth, sarcomeric, and nonmuscle tissues. J. Cell Biol. 104, 1505-1513 https://doi.org/10.1083/jcb.104.6.1505
  23. Gallagher, P.J., Jin, Y., Killough, G., Blue, E.K., and Lindner, V. (2000). Alterations in expression of myosin and myosin light chain kinases in response to vascular injury. Am. J. Physiol. Cell Physiol. 279, C1078-1087
  24. Kadenbach, B., Huttemann, M., Arnold, S., Lee, I., and Bender, E. (2000). Mitochondrial energy metabolism is regulated via nuclear-coded subunits of cytochrome c oxidase. Free Radic. Biol. Med. 29, 211-221 https://doi.org/10.1016/S0891-5849(00)00305-1
  25. Martinuzzi, A., Schievano, G., Nascimbeni, A., and Fanin, M. (1999). McArdle's disease. The unsolved mystery of the reappearing enzyme. Am. J. Pathol. 154, 1893-1897 https://doi.org/10.1016/S0002-9440(10)65447-8
  26. Pelaia, G., Cuda, G., Vatrella, A., Gallelli, L., Caraglia, M., Marra, M., Abbruzzese, A., Caputi, M., Maselli, R., Costanzo, F.S., et al. (2005). Mitogen-activated protein kinases and asthma. J. Cell Physiol. 202, 642-653 https://doi.org/10.1002/jcp.20169
  27. Rice, N.A. and Leinwand, L.A. (2003). Skeletal myosin heavy chain function in cultured lung myofibroblasts. J. Cell Biol. 163, 119-129 https://doi.org/10.1083/jcb.200303194
  28. Cookson, W. (1999). The alliance of genes and environment in asthma and allergy. Nature 402, B5-11
  29. Holgate, S.T. (1999). Genetic and environmental interaction in allergy and asthma. J. Allergy Clin. Immunol. 104, 1139-1146 https://doi.org/10.1016/S0091-6749(99)70005-9
  30. Snapper, J.R. (1990). Inflammation and airway function: the asthma syndrome. Am. Rev. Respir. Dis. 141, 531-533 https://doi.org/10.1164/ajrccm/141.3.531
  31. Mayer, D.C. and Leinwand, L.A. (1997). Sarcomeric gene expression and contractility in myofibroblasts. J. Cell Biol. 139, 1477-1484 https://doi.org/10.1083/jcb.139.6.1477
  32. Yotov, W.V., Moreau, A., and St-Arnaud, R. (1998). The alpha chain of the nascent polypeptide-associated complex functions as a transcriptional coactivator. Mol. Cell Biol. 18, 1303-1311
  33. Halayko, A.J. and Amrani, Y. (2003). Mechanisms of inflammation- mediated airway smooth muscle plasticity and airway remodeling in asthma. Respir. Physiol. Neurobiol. 137, 209-222 https://doi.org/10.1016/S1569-9048(03)00148-4
  34. Reggiani, C., Potma, E.J., Bottinelli, R., Canepari, M., Pellegrino, M.A., and Stienen, G.J. (1997). Chemo-mechanical energy transduction in relation to myosin isoform composition in skeletal muscle fibres of the rat. J. Physiol. 502, 449-460 https://doi.org/10.1111/j.1469-7793.1997.449bk.x
  35. Liang, P. and Pardee, A.B. (1992). Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257, 967-971 https://doi.org/10.1126/science.1354393
  36. Liang, P. and Pardee, A.B. (1995). Recent advances in differential display. Curr. Opin. Immunol. 7, 274-280 https://doi.org/10.1016/0952-7915(95)80015-8
  37. Beasley, R., Roche, W.R., Roberts, J.A., and Holgate, S.T. (1989). Cellular events in the bronchi in mild asthma and after bronchial provocation. Am. Rev. Respir. Dis. 139, 806-817 https://doi.org/10.1164/ajrccm/139.3.806
  38. Fukui, Y., De Lozanne, A., and Spudich, J.A. (1990). Structure and function of the cytoskeleton of a Dictyostelium myosindefective mutant. J. Cell Biol. 110, 367-378 https://doi.org/10.1083/jcb.110.2.367
  39. Molla, A., Matsumura, Y., Yamamoto, T., Okamura, R., and Maeda, H. (1987). Pathogenic capacity of proteases from Serratia marcescens and Pseudomonas aeruginosa and their suppression by chicken egg white ovomacroglobulin. Infect Immun. 55, 2509-2517
  40. Burger, A.M. and Seth, A.K. (2004). The ubiquitin-mediated protein degradation pathway in cancer: therapeutic implications. Eur. J. Cancer 40, 2217-2229 https://doi.org/10.1016/j.ejca.2004.07.006
  41. da Costa, N., Blackley, R., Alzuherri, H., and Chang, K.C. (2002). Quantifying the temporospatial expression of postnatal porcine skeletal myosin heavy chain genes. J. Histochem. Cytochem. 50, 353-364 https://doi.org/10.1177/002215540205000307
  42. Galloni, M. (2003). Bonsai, a ribosomal protein S15 homolog, involved in gut mitochondrial activity and systemic growth. Dev. Biol. 264, 482-494 https://doi.org/10.1016/j.ydbio.2003.08.021
  43. Lambert, R.K., Wiggs, B.R., Kuwano, K., Hogg, J.C., and Pare, P.D. (1993). Functional significance of increased airway smooth muscle in asthma and COPD. J. Appl. Physiol. 74, 2771-2781
  44. Weiss, A. and Leinwand, L.A. (1996). The mammalian myosin heavy chain gene family. Ann. Rev. Cell Dev. Biol. 12, 417-439 https://doi.org/10.1146/annurev.cellbio.12.1.417
  45. Zhang, Y., Lamm, W.J., Albert, R.K., Chi, E.Y., Henderson, W.R.Jr., and Lewis, D.B. (1997). Influence of the route of allergen administration and genetic background on the murine allergic pulmonary response. Am. J. Respir. Crit. Care Med. 155, 661-669 https://doi.org/10.1164/ajrccm.155.2.9032210
  46. Opazo Saez, A.M., Seow, C.Y., and Pare, P.D. (2000). Peripheral airway smooth muscle mechanics in obstructive airway disease. Am. J. Respir. Crit. Care. Med. 161, 910-917 https://doi.org/10.1164/ajrccm.161.3.9903138
  47. Ali, M., Markham, A.F., and Isaacs, J.D. (2001). Application of differential display to immunological research. J. Immunol. Methods 250, 29-43
  48. Leung, C.L., Green, K.J., and Liem, R.K. (2002). Plakins: a family of versatile cytolinker proteins. Trends Cell Biol. 12, 37-45 https://doi.org/10.1016/S0962-8924(01)02180-8
  49. Sweeney, H.L., Kushmerick, M.J., Mabuchi, K., Sreter, F.A., and Gergely, J. (1988). Myosin alkali light chain and heavy chain variations correlate with altered shortening velocity of isolated skeletal muscle fibers. J. Biol. Chem. 263, 9034-9039
  50. Hessel, E.M., Zwart, A., Oostveen, E., Van Oosterhout, A.J., Blyth, D.I., and Nijkamp, F.P. (1995). Repeated measurement of respiratory function and bronchoconstriction in unanesthetized mice. J. Appl. Physiol. 79, 1711-1716
  51. Shore, S.A. (2004). Direct effects of Th2 cytokines on airway smooth muscle. Curr. Opin. Pharmacol. 4, 235-240 https://doi.org/10.1016/j.coph.2004.01.008
  52. Van Oosterhout, A.J. and Nijkamp, F.P. (1990). Lymphocytes and bronchial hyperresponsiveness. Life Sci. 46, 1255-1264 https://doi.org/10.1016/0024-3205(90)90357-W