La0.07Sr0.3Co0.2Fe0.8O3-δ 분리막의 제조 및 산소투과 특성

Preparation and Oxygen Permeation Properties of La0.07Sr0.3Co0.2Fe0.8O3-δ Membrane

  • 박정훈 (한국에너지기술연구원 온실가스연구센터) ;
  • 김종표 (한국에너지기술연구원 온실가스연구센터) ;
  • 백일현 (한국에너지기술연구원 온실가스연구센터)
  • Park, Jung Hoon (Korea Institute of Energy Research, Green House Gas Research Center) ;
  • Kim, Jong Pyo (Korea Institute of Energy Research, Green House Gas Research Center) ;
  • Baek, Il Hyun (Korea Institute of Energy Research, Green House Gas Research Center)
  • 투고 : 2008.03.22
  • 심사 : 2008.09.01
  • 발행 : 2008.10.10

초록

구연산법을 이용하여 $La_{0.7}Sr_{0.3}Co_{0.2}Fe_{0.8}O_{3-{\delta}$ 산화물을 합성하였으며, 합성된 분말은 압축 성형 후 $1300^{\circ}C$에서 소결하여 치밀한 페롭스카이트 분리막을 제조하였다. 구연산법으로 제조한 $La_{0.7}Sr_{0.3}Co_{0.2}Fe_{0.8}O_{3-{\delta}$의 전구물질은 TGA와 XRD로 분석하였다. $260{\sim}410^{\circ}C$ 온도 영역에서 전구물질의 금속-구연산 복합체가 분해되며 페롭스카이트 산화물이 얻어지나 XRD 분석결과 $900^{\circ}C$ 이하에서는 $SrCO_3$가 불순물로 존재하였다. 분리막의 전기전도도는 온도가 증가함에 따라 증가하다. 결정격자의 산소 손실로 인해 공기분위기에서는 $700^{\circ}C$ ($Po_2=0.2atm$)부터, 헬륨분위기에서는 $600^{\circ}C$ ($Po_2=0.01atm$) 부터 각각 감소하였다. 산소투과량은 온도가 증가할수록 증가하였고, 두께 1.6 mm의 $La_{0.7}Sr_{0.3}Co_{0.2}Fe_{0.8}O_{3-{\delta}$ 분리막은 $950^{\circ}C$에서 $0.31cm^3/cm^2{\cdot}min$의 최대 투과도를 보였다. 산소투과에 대한 활성화 에너지는 $750{\sim}950^{\circ}C$ 온도 영역에서 88.4 kJ/mol이었다. 40 h의 투과실험 후에 분리막의 페롭스카이트 결정 구조는 변하지 않았으며 0.3 mol Sr doping 시 2차상이 생성되지 않고 안정하였다.

과제정보

연구 과제 주관 기관 : 과학기술부

참고문헌

  1. K. Thambimuthu, M. Soltanieh, and J. C. Abanades, IPCC Special Report on Carbon dioxide Capture and Storage, ed. O. Davidson, B. Metz, 1, 6, Cambridge University Press London (2005)
  2. A. J. Burggraaf and J. H, M. Bouwmeester, Fundamentals of Inorganic Membrane Science and Technology, ed. A. J. Burggraaf and L. Cot, 4, 435, Elsevier, Amsterdam (1996)
  3. J. H. Park and S. D. Park, Korean J. Chem. Eng., 24, 897 (2007) https://doi.org/10.1007/s11814-007-0062-2
  4. C.-F. Kao and W.-D. Yang, Appl. Organometal. Chem., 13, 383 (1999) https://doi.org/10.1002/(SICI)1099-0739(199905)13:5<383::AID-AOC836>3.0.CO;2-P
  5. S. Kim, Y. L. Yang, R. Christoffersen, and A. J. Jacobson, Solid State Ionics, 104, 57 (1997) https://doi.org/10.1016/S0167-2738(97)00427-X
  6. J. H. Park, J. P. Kim, H. T. Kwon, and K. J. Soo, Desalination, 233, 73 (2008) https://doi.org/10.1016/j.desal.2007.09.045
  7. K. R. Patent 10-2007-0130276 (2007)
  8. S. Li, W. Jin, P. Huang, N. Xu, J. Shi, Y. S. Lin, M. Z. C. Hu, and E. A. Payzant, Ind. Eng. Chem. Res., 38, 2963 (1999) https://doi.org/10.1021/ie9900014
  9. Y. Teraoka, T. Nobunaga and N. Yamazoe, Chem. Lett., 503 (1988)
  10. C. Y. Tsai, A. G. Dixon, Y. H. Ma, W. R. Moser, and M. R. Pascucci, J. Am. Ceram. Soc., 81, 1437 (1998) https://doi.org/10.1111/j.1151-2916.1998.tb02501.x
  11. J. W. Stevenson, T. R. Armstrong, R. D. Carneim, L. R. Pederson, and W. J. Weber, J. Electrochem. Soc., 143, 2722 (1996) https://doi.org/10.1149/1.1837098
  12. X. Qi, Y. S. Lin, and S. L. Swartz, Ind. Eng. Chem. Res., 39, 646 (2000) https://doi.org/10.1021/ie990675e