Preparation and Oxygen Permeation Properties of La0.07Sr0.3Co0.2Fe0.8O3-δ Membrane

La0.07Sr0.3Co0.2Fe0.8O3-δ 분리막의 제조 및 산소투과 특성

  • Park, Jung Hoon (Korea Institute of Energy Research, Green House Gas Research Center) ;
  • Kim, Jong Pyo (Korea Institute of Energy Research, Green House Gas Research Center) ;
  • Baek, Il Hyun (Korea Institute of Energy Research, Green House Gas Research Center)
  • 박정훈 (한국에너지기술연구원 온실가스연구센터) ;
  • 김종표 (한국에너지기술연구원 온실가스연구센터) ;
  • 백일현 (한국에너지기술연구원 온실가스연구센터)
  • Received : 2008.03.22
  • Accepted : 2008.09.01
  • Published : 2008.10.10


$La_{0.7}Sr_{0.3}Co_{0.2}Fe_{0.8}O_{3-{\delta}$ oxide was synthesized by a citrate method and a typical dense membrane of perovskite oxide has been prepared using as-prepared powder by pressing and sintering at $1300^{\circ}C$. Precursor of $La_{0.7}Sr_{0.3}Co_{0.2}Fe_{0.8}O_{3-{\delta}$ prepared by citrate method was investigated by TGA and XRD. Metal-citrate complex in precursor was decomposed into perovskite oxide in the temperature range of $260{\sim}410^{\circ}C$ but XRD results showed $SrCO_3$ existed as impurity at less than $900^{\circ}C$. Electrical conductivity of membrane increased with increasing temperature but then decreased over $700^{\circ}C$ in air atmosphere ($Po_2=0.2atm$) and $600^{\circ}C$ in He atmosphere ($Po_2=0.01atm$) respectively due to oxygen loss from the crystal lattice. The oxygen permeation flux increased with increasing temperature and maximum oxygen permeation flux of $La_{0.7}Sr_{0.3}Co_{0.2}Fe_{0.8}O_{3-{\delta}$ membrane with 1.6 mm thickness was about $0.31cm^3/cm^2{\cdot}min$ at $950^{\circ}C$. The activation energy for oxygen permeation was 88.4 kJ/mol in the temperature range of $750{\sim}950^{\circ}C$. Perovskite structure of membrane was not changed after permeation test of 40 h and the membrane was stable without secondary phase change with 0.3 mol Sr addition.


Supported by : 과학기술부


  1. K. Thambimuthu, M. Soltanieh, and J. C. Abanades, IPCC Special Report on Carbon dioxide Capture and Storage, ed. O. Davidson, B. Metz, 1, 6, Cambridge University Press London (2005)
  2. A. J. Burggraaf and J. H, M. Bouwmeester, Fundamentals of Inorganic Membrane Science and Technology, ed. A. J. Burggraaf and L. Cot, 4, 435, Elsevier, Amsterdam (1996)
  3. J. H. Park and S. D. Park, Korean J. Chem. Eng., 24, 897 (2007)
  4. C.-F. Kao and W.-D. Yang, Appl. Organometal. Chem., 13, 383 (1999)<383::AID-AOC836>3.0.CO;2-P
  5. S. Kim, Y. L. Yang, R. Christoffersen, and A. J. Jacobson, Solid State Ionics, 104, 57 (1997)
  6. J. H. Park, J. P. Kim, H. T. Kwon, and K. J. Soo, Desalination, 233, 73 (2008)
  7. K. R. Patent 10-2007-0130276 (2007)
  8. S. Li, W. Jin, P. Huang, N. Xu, J. Shi, Y. S. Lin, M. Z. C. Hu, and E. A. Payzant, Ind. Eng. Chem. Res., 38, 2963 (1999)
  9. Y. Teraoka, T. Nobunaga and N. Yamazoe, Chem. Lett., 503 (1988)
  10. C. Y. Tsai, A. G. Dixon, Y. H. Ma, W. R. Moser, and M. R. Pascucci, J. Am. Ceram. Soc., 81, 1437 (1998)
  11. J. W. Stevenson, T. R. Armstrong, R. D. Carneim, L. R. Pederson, and W. J. Weber, J. Electrochem. Soc., 143, 2722 (1996)
  12. X. Qi, Y. S. Lin, and S. L. Swartz, Ind. Eng. Chem. Res., 39, 646 (2000)