Fabrication and Photocatalytic Properties of SiO2-TiO2 Composite Nanofibers

SiO2-TiO2계 복합 나노섬유의 제조 및 광활성 연구

  • Hyun, Dong Ho (Center for Research and Development, Doobon Inc.) ;
  • Lim, Tae-Ho (Center for Research and Development, Doobon Inc.) ;
  • Lee, Sung Wook (Center for Research and Development, Doobon Inc.)
  • Received : 2008.08.20
  • Accepted : 2008.09.19
  • Published : 2008.10.10

Abstract

$(1-x)SiO_2-(x)TiO_2$ composite fibers with various compositions of $TiO_2$ were prepared by electrospinning their sol-gel precursors of titanium (IV) iso-propoxide (TiP), and tetraethyl orthosilicate (TEOS). The surface morphology and structure of sintered composite fibers were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), simultaneous thermogravimetric analysis-differential scanning calorimetry (TGA-DSC) and Fourier transform infrared spectroscopy (FT-IR). As the content of $TiO_2$ in $(1-x)SiO_2-(x)TiO_2$ system was increased the average diameter of composite fibers was proportionally increased. Also, the transformation of $TiO_2$ from anatase to rutile form was inhibited by the highly dispersed $TiO_2$ around $SiO_2$ particles up to $0.6SiO_2-0.4TiO_2$ composite fibers even after calcination at $1000^{\circ}C$. The photocatalytic activity of $SiO_2-TiO_2$ composite fibers was examined for the methylene blue (MB) decomposition which was confirmed using UV-vis/DRS spectra. The experiments demonstrated that the MB in aqueous solution was successfully photodegraded using $SiO_2-TiO_2$ composite nanofibers under UV-visible light irradiation.

Acknowledgement

Supported by : 환경부

References

  1. S.-S. Choi, S. G. Lee, C. W. Joo, S. S. Im, and S. H. Kim, J. Mater. Sci. Lett., 39, 1511 (2004) https://doi.org/10.1023/B:JMSC.0000013931.84760.b0
  2. S.-S. Choi, S. G. Lee, S. S. Im, S. H. Kim, and Y. L. Joo, J. Mater. Sci. Lett., 22, 891 (2003) https://doi.org/10.1023/A:1024475022937
  3. H. Guan, C. Shao, S. Wen, B. Chin, J. Gong, and X. Yang, Inorg. Chem. Commun., 6, 1302 (2003) https://doi.org/10.1016/j.inoche.2003.08.003
  4. P. Viswanathamurthi, N. Bhattarai, H. Y. Kim, D. R. Lee, S. R. Kim, and M. A. Morris, Chem. Phys. Lett., 374, 79 (2003) https://doi.org/10.1016/S0009-2614(03)00702-4
  5. Y. Kotani, A. Matsuda, M. Tatsumisago, and T. Minami, J. Sol-Gel Sci. Tech., 19, 585 (2000) https://doi.org/10.1023/A:1008709210723
  6. P. Viswanathamurthi, N. Bhattarai, H. Y. Kim, and D. R. Lee, Scripta Materialia, 49, 577 (2003) https://doi.org/10.1016/S1359-6462(03)00333-6
  7. B. Ding, H. Kim, C. Kim, M. Khil, and S. Park, Nanotechnology, 14, 532 (2003) https://doi.org/10.1088/0957-4484/14/5/309
  8. H. Dai, H. J. Gong, H. Kim, and D. Lee, Nanotechnology, 13, 674 (2002) https://doi.org/10.1088/0957-4484/13/5/327
  9. C. Shao, H. Kim, J. Gong, and D. Lee, Nanotechnology, 13, 635 (2002) https://doi.org/10.1088/0957-4484/13/5/319
  10. P. Viswanathamurthi, N. Bhattarai, C. K. Kim, H. Y. Kim, and D. R. Lee, Inorg. Chem. Commun., 7, 679 (2004) https://doi.org/10.1016/j.inoche.2004.03.013
  11. X.-C. Yuan, W. X. Yu, W. C. Cheong, and N. Q. Ngo, J. Phys. D: Appl. Phys., 35, L81 (2002) https://doi.org/10.1088/0022-3727/35/17/101
  12. D. Li, T. Herricks, and Y. Xia, Appl. Phys. Lett., 83, 4586 (2003) https://doi.org/10.1063/1.1630844
  13. H. Guan, C. Shao, Y. Liu, N. Yu, and X. Yang, Solid State Commun., 131, 107 (2004) https://doi.org/10.1016/j.ssc.2004.04.035
  14. Y. Wang and J. J. Santiago-Aviles, Nanotechnology, 15 32 (2004) https://doi.org/10.1088/0957-4484/15/1/006
  15. N. Dharmaraj, H. C. Park, C. K. Kim, H. Y. Kim, and D. R. Lee, Mater. Chem. Phys., 87, 5 (2004) https://doi.org/10.1016/j.matchemphys.2004.05.005
  16. S.-S. Choi, B. Chu, S. G. Lee, S. W. Lee, S. S. Im, S. H. Kim, and J. K. Park, J. Sol-Gel Sci. Tech., 30, 215 (2004) https://doi.org/10.1023/B:JSST.0000039530.09380.bc
  17. S. W. Lee, Y. U. Kim, S.-S. Choi, T. Y. Park, Y. L. Joo, and S. G. Lee, Mater. Lett., 61, 889 (2007) https://doi.org/10.1016/j.matlet.2006.06.020
  18. V. N. Parmon, Catalysis Today, 39 (1997)
  19. T. N. Obee and R. T. Brown, Environ. Sci. Tech., 29 (1995)
  20. G. A. Sorial, F. L. Smith, M. Suidan, P. Biswas, and R. C. Brenner, J. Haz. Mater., 53, 19 (1997) https://doi.org/10.1016/S0304-3894(96)01842-0
  21. H. Segawa, J. Fukuyoshi, K. Tanaka, and K. Yoshida, J. Mat. Sci. Lett., 22, 687 (2003) https://doi.org/10.1023/A:1023623228830
  22. T. Gunji, T. Kasahara, and Y. Abe, J. Sol-Gel Sci. Tech., 13, 957 (1998) https://doi.org/10.1023/A:1008643828073
  23. L. Dai, X. L. Chen, T. Xhou, and B. Q. Hu, J. Phys.: Condens. Matter., 14, L473 (2002) https://doi.org/10.1088/0953-8984/14/25/106
  24. M. Andrianainarivelo, R. Corriu, D. Leclercq, P. H. Mutin, and A. Vioux, J. Mater. Chem., 6, 1665 (1996) https://doi.org/10.1039/jm9960601665
  25. S. W. Lee and R. A. Condrate Sr, J. Mater. Sci., 23, 2951 (1988) https://doi.org/10.1007/BF00547474