Fabrication and Photocatalytic Properties of SiO2-TiO2 Composite Nanofibers

SiO2-TiO2계 복합 나노섬유의 제조 및 광활성 연구

  • Hyun, Dong Ho (Center for Research and Development, Doobon Inc.) ;
  • Lim, Tae-Ho (Center for Research and Development, Doobon Inc.) ;
  • Lee, Sung Wook (Center for Research and Development, Doobon Inc.)
  • 현동호 ((주)두본 기술연구소) ;
  • 임태호 ((주)두본 기술연구소) ;
  • 이성욱 ((주)두본 기술연구소)
  • Received : 2008.08.20
  • Accepted : 2008.09.19
  • Published : 2008.10.10

Abstract

$(1-x)SiO_2-(x)TiO_2$ composite fibers with various compositions of $TiO_2$ were prepared by electrospinning their sol-gel precursors of titanium (IV) iso-propoxide (TiP), and tetraethyl orthosilicate (TEOS). The surface morphology and structure of sintered composite fibers were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), simultaneous thermogravimetric analysis-differential scanning calorimetry (TGA-DSC) and Fourier transform infrared spectroscopy (FT-IR). As the content of $TiO_2$ in $(1-x)SiO_2-(x)TiO_2$ system was increased the average diameter of composite fibers was proportionally increased. Also, the transformation of $TiO_2$ from anatase to rutile form was inhibited by the highly dispersed $TiO_2$ around $SiO_2$ particles up to $0.6SiO_2-0.4TiO_2$ composite fibers even after calcination at $1000^{\circ}C$. The photocatalytic activity of $SiO_2-TiO_2$ composite fibers was examined for the methylene blue (MB) decomposition which was confirmed using UV-vis/DRS spectra. The experiments demonstrated that the MB in aqueous solution was successfully photodegraded using $SiO_2-TiO_2$ composite nanofibers under UV-visible light irradiation.

Keywords

electrospinning;$SiO_2-TiO_2$ composite nanofibers;methylene blue decomposition

Acknowledgement

Supported by : 환경부

References

  1. S.-S. Choi, S. G. Lee, C. W. Joo, S. S. Im, and S. H. Kim, J. Mater. Sci. Lett., 39, 1511 (2004) https://doi.org/10.1023/B:JMSC.0000013931.84760.b0
  2. B. Ding, H. Kim, C. Kim, M. Khil, and S. Park, Nanotechnology, 14, 532 (2003) https://doi.org/10.1088/0957-4484/14/5/309
  3. H. Guan, C. Shao, Y. Liu, N. Yu, and X. Yang, Solid State Commun., 131, 107 (2004) https://doi.org/10.1016/j.ssc.2004.04.035
  4. V. N. Parmon, Catalysis Today, 39 (1997)
  5. S. W. Lee and R. A. Condrate Sr, J. Mater. Sci., 23, 2951 (1988) https://doi.org/10.1007/BF00547474
  6. G. A. Sorial, F. L. Smith, M. Suidan, P. Biswas, and R. C. Brenner, J. Haz. Mater., 53, 19 (1997) https://doi.org/10.1016/S0304-3894(96)01842-0
  7. P. Viswanathamurthi, N. Bhattarai, H. Y. Kim, and D. R. Lee, Scripta Materialia, 49, 577 (2003) https://doi.org/10.1016/S1359-6462(03)00333-6
  8. P. Viswanathamurthi, N. Bhattarai, C. K. Kim, H. Y. Kim, and D. R. Lee, Inorg. Chem. Commun., 7, 679 (2004) https://doi.org/10.1016/j.inoche.2004.03.013
  9. T. N. Obee and R. T. Brown, Environ. Sci. Tech., 29 (1995)
  10. S.-S. Choi, S. G. Lee, S. S. Im, S. H. Kim, and Y. L. Joo, J. Mater. Sci. Lett., 22, 891 (2003) https://doi.org/10.1023/A:1024475022937
  11. Y. Kotani, A. Matsuda, M. Tatsumisago, and T. Minami, J. Sol-Gel Sci. Tech., 19, 585 (2000) https://doi.org/10.1023/A:1008709210723
  12. D. Li, T. Herricks, and Y. Xia, Appl. Phys. Lett., 83, 4586 (2003) https://doi.org/10.1063/1.1630844
  13. C. Shao, H. Kim, J. Gong, and D. Lee, Nanotechnology, 13, 635 (2002) https://doi.org/10.1088/0957-4484/13/5/319
  14. M. Andrianainarivelo, R. Corriu, D. Leclercq, P. H. Mutin, and A. Vioux, J. Mater. Chem., 6, 1665 (1996) https://doi.org/10.1039/jm9960601665
  15. X.-C. Yuan, W. X. Yu, W. C. Cheong, and N. Q. Ngo, J. Phys. D: Appl. Phys., 35, L81 (2002) https://doi.org/10.1088/0022-3727/35/17/101
  16. L. Dai, X. L. Chen, T. Xhou, and B. Q. Hu, J. Phys.: Condens. Matter., 14, L473 (2002) https://doi.org/10.1088/0953-8984/14/25/106
  17. S. W. Lee, Y. U. Kim, S.-S. Choi, T. Y. Park, Y. L. Joo, and S. G. Lee, Mater. Lett., 61, 889 (2007) https://doi.org/10.1016/j.matlet.2006.06.020
  18. P. Viswanathamurthi, N. Bhattarai, H. Y. Kim, D. R. Lee, S. R. Kim, and M. A. Morris, Chem. Phys. Lett., 374, 79 (2003) https://doi.org/10.1016/S0009-2614(03)00702-4
  19. N. Dharmaraj, H. C. Park, C. K. Kim, H. Y. Kim, and D. R. Lee, Mater. Chem. Phys., 87, 5 (2004) https://doi.org/10.1016/j.matchemphys.2004.05.005
  20. T. Gunji, T. Kasahara, and Y. Abe, J. Sol-Gel Sci. Tech., 13, 957 (1998) https://doi.org/10.1023/A:1008643828073
  21. H. Dai, H. J. Gong, H. Kim, and D. Lee, Nanotechnology, 13, 674 (2002) https://doi.org/10.1088/0957-4484/13/5/327
  22. H. Segawa, J. Fukuyoshi, K. Tanaka, and K. Yoshida, J. Mat. Sci. Lett., 22, 687 (2003) https://doi.org/10.1023/A:1023623228830
  23. Y. Wang and J. J. Santiago-Aviles, Nanotechnology, 15 32 (2004) https://doi.org/10.1088/0957-4484/15/1/006
  24. S.-S. Choi, B. Chu, S. G. Lee, S. W. Lee, S. S. Im, S. H. Kim, and J. K. Park, J. Sol-Gel Sci. Tech., 30, 215 (2004) https://doi.org/10.1023/B:JSST.0000039530.09380.bc
  25. H. Guan, C. Shao, S. Wen, B. Chin, J. Gong, and X. Yang, Inorg. Chem. Commun., 6, 1302 (2003) https://doi.org/10.1016/j.inoche.2003.08.003