Differential Expression of Cytochrome P450 Genes Regulate the Level of Adipose Arachidonic Acid in Sus Scrofa

  • Choi, Kyung-Mi (Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Moon, Jin-Kyoo (Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Choi, Seong-Ho (Department of Animal Science, Chungbuk National University) ;
  • Kim, Kwan-Suk (Department of Animal Science, Chungbuk National University) ;
  • Choi, Yang-Il (Department of Animal Science, Chungbuk National University) ;
  • Kim, Jong-Joo (School of Biotechnology, Yeungnam University) ;
  • Lee, Cheol-Koo (Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University)
  • Received : 2008.01.23
  • Accepted : 2008.04.23
  • Published : 2008.07.01


We compared the fatty acid composition of adipose tissues prepared from Korean native and Yorkshire pigs that have different characteristics in growth and fat deposition. There was no significant difference in the content of most fatty acids between the two breeds, with the exception of arachidonic acid and cis-11,14,17-eicosatrienoic acid. We also investigated the transcriptional levels of genes encoding three different types of oxygenases, including cytochrome P450 (CYP), lipoxygenase and cyclooxygenase, which metabolize arachidonic acid. We found a significant difference in the expression of the CYP genes, CYP2A13, CYP2U1 and CYP3A4, but no differences for the latter two genes between the two breeds. Our results suggest that the difference in arachidonic acid content between the two breeds was caused by differential expression of the CYP genes. Eventually, different levels of EETs and HETEs produced from arachidonic acid by the activity of CYP might contribute partly to the difference of fatness between the two breeds.


Supported by : Rural Development Administration


  1. Amaral, S. L., K. G. Maier, D. N. Schippers, R. J. Roman and A. S. Greene. 2003. CYP4A metabolites of arachidonic acid and VEGF are mediators of skeletal muscle angiogenesis. Am. J. Physiol. Heart Circ. Physiol. 284:H1528-H1535.
  2. Ayajiki, K., H. Fujioka, N. Toda, S. Okada, Y. Minamiyama, S. Imaoka, Y. Funae, S. Watanabe, A. Nakamura and T. Okamura. 2003. Mediation of arachidonic acid metabolite(s) produced by endothelial cytochrome P-450 3A4 in monkey arterial relaxation. Hypertens. Res. 26(3):237-243.
  3. Fleming, I. and R. Busse. 2006. Endothelium-derived epoxyeicosatrienoic acids and vascular function. Hypertension. 47:629-633.
  4. Escalante, B., W. C. Sessa, J. R. Falck, P. Yadagiri and M. L. Schwartzman. 1990. Cytochrome P450-dependent arachidonic acid metabolites, 19- and 20-hydroxyeicosatetraenoic acids, enhance sodium-potassium ATPase activity in vascular smooth muscle. J. Cardiovasc. Pharmacol. 16(3):438-443.
  5. Chuang, S. S., C. Helvig, M. Taimi, H. A. Ramshaw, A. H. Collop, M. Amad, J. A. White, M. Petkovich, G. Jones and B. Korczak. 2004. CYP2U1, a novel human thymus- and brain-specific cytochrome P450, catalyzes omega- and (omega-1)-hydroxylation of fatty acids. J. Biol. Chem. 279(8):6305-6314.
  6. Kim, E. H., B. H. Choi, K. S. Kim, C. K. Lee, B. W. Cho, T. H. Kim and J. J. Kim. 2007. Detection of medelian and parent-oforigin quantitative trait loci in a cross between Korean native pig and Landrace I. growth and body composition traits. Asian-Aust. J. Anim. Sci. 20:669-676.
  7. Kim, T. H., B. H. Choi, G. W. Chang, K. T. Lee, H. Y. Lee, J. H. Lee, K. S. Kim, C. K. Park and C. Moran. 2005. Molecular characterization and chromosomal mapping of porcine adipose differentiation-related protein (ADRP). J. Anim. Breed Genet. 122(4):240-246.
  8. Folch, J., M. Lees and G. H. Sloane Stanley. 1957. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226(1):497-509.
  9. Jiang, M., A. Mezentsev, R. Kemp, K. Byun, J. R. Falck, J. M. Miano, A. Nasjletti, N. G. Abraham and M. Laniado-Schwartzman. 2004. Smooth muscle--specific expression of CYP4A1 induces endothelial sprouting in renal arterial microvessels. Circ. Res. 94:167-174.
  10. Madsen, L., R. K. Petersen and K. Kristiansen. 2005. Regulation of adipocyte differentiation and function by polyunsaturated fatty acids. Biochim. Biophys. Acta. 1740:266-286.
  11. Liu, Y., Y. Zhang, K. Schmelzer, T. S. Lee, X. Fang, Y. Zhu, A. A. Spector, S. Gill, C. Morisseau, B. D. Hammock and J. Y. Shyy. 2005. The antiinflammatory effect of laminar flow: the role of PPARgamma, epoxyeicosatrienoic acids, and soluble epoxide hydrolase. Proc. Natl. Acad. Sci. USA. 102(46):16747-16752.
  12. Lepage, G. and C. C. Roy. 1986. Direct transesterification of all classes of lipids in a one-step reaction. J. Lipid Res. 27:114-120.
  13. Kudo, I. 2004. Diversity of phospholipase A2 enzymes. Foreword. Biol. Pharm. Bull. 27(8):1157.
  14. Kroetz, D. L. and F. Xu. 2005. Regulation and inhibition of arachidonic acid omega-hydroxylases and 20-HETE formation. Annu. Rev. Pharmacol. Toxicol. 45:413-438.
  15. Roman, R. J., K. G. Maier, C. W. Sun, D. R. Harder and M. Alonso-Galicia. 2000. Renal and cardiovascular actions of 20-hydroxyeicosatetraenoic acid and epoxyeicosatrienoic acids. Clin. Exp. Pharmacol. Physiol. 27:855-865.
  16. Moreno, C., K. G. Maier, K. M. Hoagland, M. Yu and R. J. Roman. 2001. Abnormal pressure-natriuresis in hypertension: role of cytochrome P450 metabolites of arachidonic acid. Am. J. Hypertens. 14:90S-97S.
  17. Parnes, S. M. 2002. The role of leukotriene inhibitors in allergic rhinitis and paranasal sinusitis. Expert. Opin. Pharmacother. 3(1):33-38.
  18. Mohamed-Ali, V., J. H. Pinkney and S. W. Coppack. 1998. Adipose tissue as an endocrine and paracrine organ. Int. J. Obes. Relat. Metab. Disord. 22:1145-1158.
  19. Michaelis, U. R. and I. Fleming. 2006. From endothelium-derived hyperpolarizing factor (EDHF) to angiogenesis: Epoxyeicosatrienoic acids (EETs) and cell signaling. Pharmacol. Ther. 111:584-595.
  20. Sharma, A. M. and B. Staels. 2007. Review: Peroxisome proliferator-activated receptor gamma and adipose tissueunderstanding obesity-related changes in regulation of lipid and glucose metabolism. J. Clin. Endocrinol. Metab. 92(2):386-395.
  21. Roman, R. J. 2002. P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol. Rev. 82:131-185.
  22. Rozen, S. and H. Skaletsky. 2000. Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132:365-386.
  23. Wang, L. and Z. R. Xu. 2006. Effects of arsenic (AsIII) on lipid peroxidation, glutathione content and antioxidant enzymes in growing pigs. Asian-Aust. J. Anim. Sci. 19(5):727-733.
  24. Kroetz, D. L. and D. C. Zeldin. 2002. Cytochrome P450 pathways of arachidonic acid metabolism. Curr. Opin. Lipidol. 13:273-283.
  25. Tsai, S., J. P. Cassady, B. A. Freking, D. J. Nonneman, G. A. Rohrer and J. A. Piedrahita. 2006. Annotation of the Affymetrix porcine genome microarray. Anim. Genet. 37(4):423-424.

Cited by

  1. Transcriptional alteration of p53 related processes as a key factor for skeletal muscle characteristics in Sus scrofa vol.28, pp.6, 2009,
  2. Porcine Fatty Acid Synthase Gene Polymorphisms Are Associated with Meat Quality and Fatty Acid Composition vol.31, pp.3, 2011,
  3. Analyses of porcine public SNPs in coding-gene regions by re-sequencing and phenotypic association studies vol.38, pp.6, 2011,
  4. Differences in Hepatic Gene Expression as a Major Distinguishing Factor between Korean Native Pig and Yorkshire vol.75, pp.3, 2011,
  5. The effect of breed and sex on sulfamethazine, enrofloxacin, fenbendazole and flunixin meglumine pharmacokinetic parameters in swine vol.37, pp.6, 2014,
  6. Integration of Transcriptome and Whole Genomic Resequencing Data to Identify Key Genes Affecting Swine Fat Deposition vol.10, pp.4, 2015,