AG490, a Jak2-specific Inhibitor, Induces Osteoclast Survival by Activating the Akt and ERK Signaling Pathways

  • Kwak, Han Bok (Department of Anatomy, School of Medicine, Wonkwang University) ;
  • Sun, Hyun Min (Department of Cell and Developmental Biology, DRI, School of Dentistry, Seoul National University) ;
  • Ha, Hyunil (Department of Cell and Developmental Biology, DRI, School of Dentistry, Seoul National University) ;
  • Lee, Jong Ho (Department of Cell and Developmental Biology, DRI, School of Dentistry, Seoul National University) ;
  • Kim, Ha Neui (Department of Cell and Developmental Biology, DRI, School of Dentistry, Seoul National University) ;
  • Lee, Zang Hee (Department of Cell and Developmental Biology, DRI, School of Dentistry, Seoul National University)
  • Received : 2008.06.27
  • Accepted : 2008.07.21
  • Published : 2008.11.30


Osteoclasts are multinucleated cells with the unique ability to resorb bone. Elevated activity of these cells under pathologic conditions leads to the progression of bone erosion that occurs in osteoporosis, periodontal disease, and rheumatoid arthritis. Thus, the regulation of osteoclast apoptosis is important for bone homeostasis. In this study, we examined the effects of the Janus tyrosine kinase 2 specific inhibitor AG490 on osteoclast apoptosis. We found that AG490 greatly inhibited osteoclast apoptosis. AG490 stimulated the phosphorylation of Akt and ERK. Adenovirus-mediated expression of dominant negative (DN)-Akt and DN-Ras in osteoclasts inhibited the survival of osteoclasts despite the presence of AG490. Cytochrome c release during osteoclast apoptosis was inhibited by AG490 treatment, but this effect was inhibited in the presence of LY294002 or U0126. AG490 suppressed the pro-apoptotic proteins Bad and Bim, which was inhibited in osteoclasts infected with DN-Akt and DN-Ras adenovirus. In addition, constitutively active MEK and myristoylated-Akt adenovirus suppressed the cleavage of pro-caspase-9 and -3 and inhibited osteoclast apoptosis induced by etoposide. Taken together, our results suggest that AG490 inhibited cytochrome c release into the cytosol at least partly by inhibiting the pro-apoptotic proteins Bad and Bim, which in turn suppressed caspase-9 and -3 activation, thereby inhibiting osteoclast apoptosis.


AG490;Akt;Erk;Jak2 inhibitor;osteoclast survival


Supported by : Korea Research Foundation


  1. Datta, S.R., Dudek, H., Tao, X., Masters, S., Fu, H., Gotoh, Y., and Greenberg, M.E. (1997). Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91, 231-241
  2. Grigoriadis, A.E., Wang, Z.Q., Cecchini, M.G., Hofstetter, W., Felix, R., Fleisch, H.A., and Wagner, E.F. (1994). c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science 266, 443-448
  3. Hu, P., Han, Z., Couvillon, A.D., and Exton, J.H. (2004). Critical role of endogenous Akt/IAPs and MEK1/ERK pathways in counteracting endoplasmic reticulum stress-induced cell death. J. Biol. Chem. 279, 49420-49429
  4. Koga, T., Inui, M., Inoue, K., Kim, S., Suematsu, A., Kobayashi, E., Iwata, T., Ohnishi, H., Matozaki, T., Kodama, T., et al. (2004). Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 428, 758-763
  5. Lee, S.E., Chung, W.J., Kwak, H.B., Chung, C.H., Kwack, K.B., Lee, Z.H., and Kim, H.H. (2001). Tumor necrosis factor-alpha supports the survival of osteoclasts through the activation of Akt and ERK. J. Biol. Chem. 276, 49343-49349
  6. Salvesen, G.S., and Dixit, V.M. (1997). Caspases: intracellular signaling by proteolysis. Cell 91, 443-446
  7. Sandberg, E.M., and Sayeski, P.P. (2004). Jak2 tyrosine kinase mediates oxidative stress-induced apoptosis in vascular smooth muscle cells. J. Biol. Chem. 279, 34547-34552
  8. Simon, Hu., Yousefi, S., Dibbert, B., Levi-Schaffer, F., and Blaser, K. (1997). Anti-apoptotic signals of granulocyte-macrophage colony-stimulating factor are transduced via Jak2 tyrosine kinase in eosinophils. Eur. J. Immunol. 27, 3536-3539
  9. Takayanagi, H., Ogasawara, K., Hida, S., Chiba, T., Murata, S., Sato, K., Takaoka, A., Yokochi, T., Oda, H., Tanaka, K., et al. (2000). T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature 408, 600-605
  10. Ley, R., Balmanno, K., Hadfield, K., Weston, C., and Cook, S.J. (2003). Activation of the ERK1/2 signaling pathway promotes phosphorylation and proteasome-dependent degradation of the BH3-only protein, bim. J. Biol. Chem. 278, 18811-18816
  11. Saudou, F., Finkbeiner, S., Devys, D., and Greenberg, M.E. (1998). Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 95, 55-66
  12. Darnell, J.E., Kerr, I.M., and Stark, G.R. (1994). Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264, 1415-1421
  13. Saito, K., Iwashita, J., Murata, J., and Abe, T. (2006). The tyrosine kinase inhibitor AG490 inhibits growth of cancer cells and activates ERK in LS174T and HT-29 cells. Anticancer Res. 26, 1085-1090
  14. Bergmann, A. (2002). Survival signaling goes BAD. Dev. Cell 3, 607-608
  15. De Vos, J., Jourdan, M., Tarte, K., Jasmin, C., and Klein, B. (2000). JAK2 tyrosine kinase inhibitor tyrphostin AG490 downregulates the mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription (STAT) pathways and induces apoptosis in myeloma cells. Br. J. Haematol. 109, 823-828
  16. Dijkers, P.F., Medema, R.H., Lammers, J.W., Koenderman, L., and Coffer, P.J. (2000). Expression of the pro-apoptotic Bcl-2 family member Bim is regulated by the forkhead transcription factor FKHR-L1. Curr. Biol. 10, 1201-1204
  17. Jane, E.P., Premkurmar, D.R., and Pollack, I.F. (2007). AG490 influences UCN-01-induced cytotoxicity in glioma cells in a p53-dependent fashion, correlating with effects on BAX cleavage and BAD phosphorylation. Cancer Lett. 257, 36-46
  18. Rho J., Takami M., and Choi, Y. (2004). Osteoimmunology: interactions of the immune and skeletal systems. Mol. Cells 17, 1-9
  19. Akiyama, T., Bouillet, P., Miyazaki, T., Kadono, Y., Chikuda, H., Chung, U.I., Fukuda, A., Hikita, A., Seto, H., Okada, T., et al. (2003). Regulation of osteoclast apoptosis by ubiquitylation of proapoptotic BH3-only Bcl-2 family member Bim. EMBO J. 22, 6653-6664
  20. Weinstein, R.S., Chen, J.R., Powers, C.C., Stewart, S.A., Landes, R.D., Bellido, T., Jilka, R.L., Parfitt, A.M., and Manolagas, S.C. (2002). Promotion of osteoclast survival and antagonism of bisphosphonate-induced osteoclast apoptosis by glucocorticoids. J. Clin. Invest. 109, 1041-1048
  21. Huang, H.M., Huang, C.J., and Yen, J.J. (2000). Mcl-1 is a common target of stem cell factor and interleukin-5 for apoptosis prevention activity via MEK/MAPK and PI-3K/Akt pathways. Blood 96, 1764-1771
  22. Oshiro, M.M., Landowski, T.H., Catlett-Falcone, R., Hazlehurst, L.A., Huang, M., Jove, R., and Dalton, W.S. (2001). Inhibition of JAK kinase activity enhances Fas-mediated apoptosis but reduces cytotoxic activity of topoisomerase II inhibitors in U266 myeloma cells. Clin. Cancer Res. 7, 4262-4271
  23. Kwak, H.B., Lee, S.W., Li, Y.J., Kim, Y.A., Han, S.Y., Jhon, G.J., Kim, H.H., and Lee, Z.H. (2004). Inhibition of osteoclast differentiation and bone resorption by a novel lysophosphatidylcholine derivative, SCOH. Biochem. Pharmacol. 67, 1239-1248
  24. Lindsten, T., Ross, A.J., King, A., Zong, W.X., Rathmell, J.C., Shiels, H.A., Ulrich, E., Waymire, K.G., Mahar, P., Frauwirth, K., et al. (2000). The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol. Cell 6, 1389-1399
  25. Neubauer, H., Cumano, A., Muller, M., Wu, H., Huffstadt, U., and Pfeffer, K. (1998). Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell 93, 397-409
  26. Scheid, M.P., Schubert, K.M., and Duronio, V. (1999). Regulation of bad phosphorylation and association with Bcl-xL by the MAPK/Erk kinase. J. Biol. Chem. 274, 31108-31113
  27. Takayanagi, H. (2007). Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat. Rev. Immunol. 7, 292-304
  28. Wang, Z.B., Liu, Y.Q., and Cui, Y.F. (2005). Pathways to caspase activation. Cell Biol. Int. 29, 489-496
  29. Jones, R.G., Parsons, M., Bonnard, M., Chan, V.S., Yeh, W.C., Woodgett, J.R., and Ohashi, P.S. (2000). Protein kinase B regulates T lymphocyte survival, nuclear factor kappaB activation, and Bcl-X(L) levels in vivo. J. Exp. Med. 191, 1721-1734
  30. Miyazaki, T., Katagiri, H., Kanegae, Y., Takayanagi, H., Sawada, Y., Yamamoto, A., Pando, M.P., Asano, T., Verma, I.M., Oda, H., et al. (2000). Reciprocal role of ERK and NF-kappaB pathways in survival and activation of osteoclasts. J. Cell Biol. 148, 333-342
  31. Tanaka, S., Miyazaki, T., Fukuda, A., Akiyama, T., Kadono, Y., Wakeyama, H., Kono, S., Hoshikawa, S., Nakamura, M., Ohshima, Y., et al. (2006). Molecular mechanism of the life and death of the osteoclast. Ann. N. Y. Acad. Sci. 1068, 180-186
  32. Letai, A., Bassik, M.C., Walensky, L.D., Sorcinelli, M.D., Weiler, S., and Korsmeyer, S.J. (2002). Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2, 183-192
  33. Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S.M., Ahmad, M., Alnemri, E.S., and Wang, X. (1997). Cytochrome c and dATPdependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479-489
  34. Pedranzini, L., Dechow, T., Berishaj, M., Comenzo, R., Zhou, P., Azare, J., Bornmann, W., and Bromberg, J. (2006). Pyridone 6, A pan-janus-activated kinase inhibitor, induces growth inhibition of multiple myeloma cells. Cancer Res. 66, 9714-9721
  35. Novak, U., Harpur, A.G., Paradiso, L., Kanagasundaram, V., Jaworowski, A., Wilks, A.F., and Hamilton, J.A. (1995). Colonystimulating factor 1-induced STAT1 and STAT3 activation is accompanied by phosphorylation of Tyk2 in macrophages and Tyk2 and JAK1 in fibroblasts. Blood 86, 2948-2956
  36. Teitelbaum, S.L., and Ross, F.P. (2003). Genetic regulation of osteoclast development and function. Nat. Rev. Genet. 3, 638-649
  37. Yang, J., Liu, X., Bhalla, K., Kim, C.N., Ibrado, A.M., Cai, J., Peng, T.I., Jones, D.P., and Wang, X. (1997). Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275, 1129-1132
  38. Manolagas, S.C. (2000). Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr. Rev. 21, 115-137
  39. Thompson, C.B. (1995). Apoptosis in the pathogenesis and treatment of disease. Science 267, 1456-1462
  40. Jiang, X., and Wang, X. (2004). Cytochrome C-mediated apoptosis. Annu. Rev. Biochem. 73, 87-106
  41. Meydan, N., Grunberger, T., Dadi, H., Shahar, M., Arpaia, E., Lapi dot, Z., Leeder, J.S., Freedman, M., Cohen, A., Gazit, A., et al. (1996). Inhibition of acute lymphoblastic leukaemia by a Jak-2 inhibitor. Nature 379, 645-648