Methane Conversion to Hydrogen Using Ni/Al2O3 Catalyst

Ni/Al2O3 촉매를 이용한 메탄의 수소 전환

  • Kim, Jun-Keun (Department of Chemical Engineering., Kwangwoon University) ;
  • Park, Joo-Won (Department of Chemical Engineering., Kwangwoon University) ;
  • Bae, Jong-Soo (Department of Chemical Engineering., Kwangwoon University) ;
  • Kim, Jae-Ho (Gasification Research Center, Korea Institute of Energy Research) ;
  • Lee, Jae-Goo (Gasification Research Center, Korea Institute of Energy Research) ;
  • Kim, Younghun (Department of Chemical Engineering., Kwangwoon University) ;
  • Han, Choon (Department of Chemical Engineering., Kwangwoon University)
  • 김준근 (광운대학교 화학공학과) ;
  • 박주원 (광운대학교 화학공학과) ;
  • 배종수 (광운대학교 화학공학과) ;
  • 김재호 (한국에너지기술연구원 가스화연구센터) ;
  • 이재구 (한국에너지기술연구원 가스화연구센터) ;
  • 김영훈 (광운대학교 화학공학과) ;
  • 한춘 (광운대학교 화학공학과)
  • Received : 2008.02.29
  • Accepted : 2008.05.06
  • Published : 2008.10.10

Abstract

The objective of this study is to convert methane into hydrogen using a nanoporous catalyst in the $CO_2$ containing syngas generated from the gasified waste. For the purpose, $Ni/Al_2O_3$ catalyst was prepared with the one-pot method. According to analyses of the catalyst, three dimensionally linked sponge shaped particles were created and the prepared nanoporous catalysts had larger surface area and smaller particle size and more uniform pores compared to the sphere shaped commercial catalyst. The catalyst for reforming reaction gave the highest $CH_4$ conversion of 91%, and $CO_2$ conversion of 92% when impregnated with 16 wt% of Ni at the reaction temperature of $750^{\circ}C$. At that time, the prepared catalyst remarkably improved the $CH_4$ and $CO_2$ conversion up to 20% compared to the commercial one.

Keywords

reforming;metal catalyst;mesoporous alumina;syngas

Acknowledgement

Supported by : 한국에너지기술연구원, 광운대학교

References

  1. S. Wang and G. Q. Lu, Ind. Eng. Chem. Res., 38, 2615 (1999) https://doi.org/10.1021/ie980489t
  2. A. S. Al-Ubaid, Ind. Eng. Chem. Res, 27, 790 (1988) https://doi.org/10.1021/ie00077a013
  3. D. F. Vernon, M. L. H. Green, A. K. Dheertham, and A. T. Ashcroft, Catal. Today, 13, 417 (1994)
  4. K. S. Hwang, H. Y. Zhu, and C. Q. Lu, Catal. Today, 68, 183 (2001) https://doi.org/10.1016/S0920-5861(01)00299-1
  5. S. B. Kim, E. S. Park, H. J. Cheon, Y. K. Kim, M. S. Kim, H. S. Park, and H. S. Hahm, J. of Korean Oil Chem., 20, 230 (2003) https://doi.org/10.1007/BF02697233
  6. K. S. Hwang and D. K. Lee, J. Korean Society of Envio., 8, 199 (2002)
  7. A. A. Lemonidou and L. A. Vasalos, Appl. Catal. A, 228, 227 (2002). https://doi.org/10.1016/S0926-860X(01)00974-7
  8. P. Kim, Y. Kim, T. Kang, I. K. Song, and J. Yi, Catal. Sur. form Asia, 11, 49 (2007) https://doi.org/10.1007/s10563-007-9017-1
  9. S. Wang and G. Q. Lu, Energy Fuels, 12, 1235 (1998) https://doi.org/10.1021/ef980064j
  10. P. Kim, Y. Kim, T. Kang, I. K. Song, and J. Yi, Appl. Catal. A, 272, 157 (2004) https://doi.org/10.1016/j.apcata.2004.05.055